The Ramanujan Journal

, Volume 26, Issue 2, pp 193–207 | Cite as

On the evaluation of Tornheim sums and allied double sums

  • Ankur BasuEmail author


The object of study in this paper is some Tornheim type sums \(\sum_{n=1}^{\infty}\sum_{m=1}^{\infty} \frac{1}{n^{r}m^{s}(n+m)^{t}}\) which are close relatives of the so-called Euler sums \(\sum_{n=1}^{\infty}\frac{1}{n^{s}}\sum_{m=1}^{\infty}\frac{1}{m^{t}}\). Closed form evaluations of several such double sums are obtained using elementary summation techniques earlier developed by the same author.


Riemann Zeta function Euler sums Recursion formulas Tornheim sums 

Mathematics Subject Classification (2000)

40A25 40B05 11M99 33E99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Basu, A.: A new method in the study of Euler sums. Ramanujan J. 16, 7–24 (2008) MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Basu, A., Apostol, T.M.: A new method for investigating Euler sums. Ramanujan J. 4, 397–419 (2000) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Espinosa, O., Mall, H.V.: The evaluation of Tornheim double sums, Part 1. J. Number Theory 116 (2006) Google Scholar
  4. 4.
    Huard, J.G, Williams, K.S., Zhang, N.-Y.: On Tornheim’s double series. Acta Arith. 75(2), 105–117 (1996) MathSciNetzbMATHGoogle Scholar
  5. 5.
    Mordell, L.J: On the evaluation of some multiple series. J. Lond. Math. Soc. 33, 368–371 (1958) MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Tornheim, L.: Harmonic double series. Am. J. Math. 72, 303–314 (1950) MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.1/45-c/o Ranjit BasuChandannagar, Dist. HooghlyIndia

Personalised recommendations