The Ramanujan Journal

, Volume 24, Issue 1, pp 85–92 | Cite as

On the 2- and 4-dissections of Ramanujan’s continued fraction and its reciprocal

Article

Abstract

We present elementary proofs, using only Jacobi’s triple product identity, of four identities of Ramanujan and eight identities of Hirschhorn relating to the 2-dissection and the 4-dissection of Ramanujan’s continued fraction and its reciprocal, and of two identities from Ramanujan’s famous list of forty.

Keywords

2-dissection 4-dissection Ramanujan’s continued fraction List of forty 

Mathematics Subject Classification (2000)

11A55 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, G.E., Berndt, B.C.: Ramanujan’s Lost Notebook, Part I. Springer, Berlin (2005) Google Scholar
  2. 2.
    Andrews, G.E., Berndt, B.C.: Ramanujan’s Lost Notebook, Part III. Springer (to appear) Google Scholar
  3. 3.
    Berndt, B.C., Choi, G., Choi, Y.-S., Hahn, H., Yeap, B.P., Yee, A.J., Yesilyurt, H., Yi, J.: Ramanujan’s forty identities for the Regers–Ramanujan functions. Mem. Am. Math. Soc. 188, 880 (2007) MathSciNetGoogle Scholar
  4. 4.
    Birch, B.J.: A look back at Ramanujan’s notebooks. Proc. Camb. Philos. Soc. 78, 73–79 (1975) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Hirschhorn, M.D.: On the expansion of Ramanujan’s continued fraction. Ramanujan J. 2, 521–527 (1998) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Lewis, R.P.: On the ranks of partitions modulo 9. Bull. Lond. Math. Soc. 23, 417–421 (1991) MATHCrossRefGoogle Scholar
  7. 7.
    Lewis, R.P., Liu, Z.-G.: A conjecture of Hirschhorn on the 4-dissection of Ramanujan’s continued fraction. Ramanujan J. 4, 347–352 (2000) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUNSWSydneyAustralia

Personalised recommendations