The Ramanujan Journal

, Volume 24, Issue 1, pp 33–60

Multiple gamma functions, multiple sine functions, and Appell’s O-functions

Article

Abstract

Kurokawa introduced q-multiple gamma functions and q-multiple sine functions. We show that the Appell’s O-function is expressed via the q-multiple gamma function. We also give some applications of this result. For example, we obtain a formula for the “Stirling modular form” and calculate special values of the q-multiple sine function. Moreover, we give some formulas of Eisenstein series and double cotangent functions and its generalization. Then the former gives an infinite product expression of the double sine function explicitly and a result of Kurokawa.

Keywords

Appell’s O-function Multiple sine function Multiple gamma function 

Mathematics Subject Classification (2000)

11M06 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Appell, P.: Sur une class de fonctions analogues aux fonctions Eulériennes. Math. Ann. 19, 84–102 (1882) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Barnes, E.W.: The genesis of the double gamma functions. Proc. Lond. Math. Soc. 31, 358–381 (1899) CrossRefGoogle Scholar
  3. 3.
    Barnes, E.W.: The theory of the double gamma function. Philos. Trans. R. Soc. Lond. Ser. A 196, 265–388 (1901) CrossRefGoogle Scholar
  4. 4.
    Barnes, E.W.: On the theory of the multiple gamma function. Trans. Camb. Philos. Soc. 19, 374–425 (1904) Google Scholar
  5. 5.
    Berndt, B.C., Dixit, A.: A transformation formula involving the gamma and Riemann zeta functions in Ramanujan’s lost notebook. arXiv:0904.1053v2 [math.NT], 8 Apr 2009
  6. 6.
    Deninger, C.: Local L-factors of motives and regularized determinants. Invent. Math. 107, 135–150 (1992) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kurokawa, N.: Multiple Sine Functions. Lecture Notes in Japanese. Lectures delivered at Tokyo University, notes taken by S. Koyama (1991) Google Scholar
  8. 8.
    Kurokawa, N.: Derivatives of multiple sine functions. Proc. Jpn. Acad. Ser. A 80, 65–69 (2004) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kurokawa, N.: Examples of Stirling modular form. Preprint (2007) Google Scholar
  10. 10.
    Kurokawa, N.: Limit values of Eisenstein series and multiple cotangent functions. J. Number Theory 128(6), 1775–1783 (2008). doi:10.1016/j.jnt.2007.06.003 MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kurokawa, N., Koyama, S.: Multiple sine functions. Forum Math. 15, 839–876 (2003) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kurokawa, N., Wakayama, M.: On q-basic multiple gamma functions. Int. J. Math. 14, 885–902 (2003) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kurokawa, N., Wakayama, M.: Zeta regularized product for expressions for multiple trigonometric functions. Tokyo J. Math. 27, 469–480 (2004) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kurokawa, N., Wakayama, M.: Generalized zeta regularizations, quantum class number formulas, and Appell’s O-functions. Ramanujan J. 10, 291–303 (2005) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Koyama, S., Kurokawa, N.: Multiple Eisenstein series and multiple cotangent functions. J. Number Theory 128(6), 1769–1774 (2008). doi:10.1016/j.jnt.2007.06.004 MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Lerch, M.: Dals̆í studie v oboru Malmsténovských r̆ad. Rozpravy C̆eské Akad. 3(28), 1–61 (1894) MathSciNetGoogle Scholar
  17. 17.
    Narukawa, A.: The modular properties and the integral representations of the multiple elliptic gamma functions. Adv. Math. 189(2), 247–267 (2004) MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Nishizawa, M.: An elliptic analogue of the multiple gamma function. J. Phys. A 34(36), 7411–7421 (2001) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Shintani, T.: On a Kronecker limit formula for real quadratic fields. J. Fac. Sci., Univ. Tokyo, Ser. IA, Math. 24(1), 167–199 (1977) MATHMathSciNetGoogle Scholar
  20. 20.
    Shintani, T.: A proof of the classical Kronecker limit formula. Tokyo J. Math. 3, 191–199 (1980) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Tanaka, H.: Special values of multiple sine functions. Kyushu J. Math. 62, 123–137 (2008) MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Ruijsenaars, S.N.M.: On Barnes’ multiple zeta and gamma functions. Adv. Math. 156, 107–132 (2000) MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Ruijsenaars, S.N.M.: Special functions defined by analytic difference equations. In: Special Functions 2000: Current Perspective and Future Directions. NATO Sci. Ser. II, Math. Phys. Chem., vol. 30, pp. 281–333. Kluwer Academic, Dordrecht (2001) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsTokyo Institute of TechnologyMeguroJapan

Personalised recommendations