The Ramanujan Journal

, Volume 24, Issue 1, pp 61–65 | Cite as

A new proof of the Askey–Wilson integral via a five-variable Ramanujan’s reciprocity theorem

Article

Abstract

In this paper, we give an easy and short proof of the well-known Askey–Wilson integral by means of the five-variable Ramanujan’s reciprocity theorem.

Keywords

q-Series Ramanujan’s reciprocity theorem Askey–Wilson integral 

Mathematics Subject Classification (2000)

05A30 33D05 33D15 33D45 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adiga, C., Anitha, N.: On a reciprocity theorem of Ramanujan. Tamsui Oxf. J. Math. Sci. 22, 9–15 (2006) MATHMathSciNetGoogle Scholar
  2. 2.
    Andrews, G.E.: Ramanujan’s “lost” notebook. I: partial θ-functions. Adv. Math. 41, 137–172 (1981) MATHCrossRefGoogle Scholar
  3. 3.
    Andrews, G.E., Berndt, B.C.: Ramanujan’s Lost Notebook, Part II. Springer, Berlin (2008), pp. 117–118 Google Scholar
  4. 4.
    Askey, R.: A q-extension of Cauchy’s form of the beta integral. Q. J. Math. 32(2), 255–266 (1981) MATHMathSciNetGoogle Scholar
  5. 5.
    Askey, R.: An elementary evalution of a beta type integral. Indian J. Pure. Appl. Math. 14, 892–895 (1983) MATHMathSciNetGoogle Scholar
  6. 6.
    Askey, R., Wilson, J.: Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Am. Math. Soc. 319 (1985) Google Scholar
  7. 7.
    Berndt, B.C., Chan, S.H., Yeap, B.P., Yee, A.J.: A reciprocity theorem for certain q-series found in Ramanujan’s lost notebook. Ramanujan J. 13, 27–37 (2007) MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Bowman, D.: An easy proof of the Askey–Wilson integral and applications of the method. J. Math. Anal. Appl. 245(2), 560–569 (2000) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gasper, G., Rahman, M.: Basic Hypergeometric Series, 2nd edn. Encyclopedia of Mathematics and its Applications, vol. 96. Cambridge University Press, Cambridge (2004) MATHCrossRefGoogle Scholar
  10. 10.
    Ismail, M.E.H., Stanton, D., Viennot, G.: The combinatorics of q-Hermite polynomials and the Askey–Wilson integral. Eur. J. Comb. 8, 379–392 (1987) MATHMathSciNetGoogle Scholar
  11. 11.
    Kang, S.Y.: Generalizations of Ramanujan’s reciprocity theorem and their applications. J. Lond. Math. Soc. 75(2), 18–34 (2007) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Liu, Z.G.: q-Hermite polynomials and a q-beta integral. Northeast. Math. J. 13, 361–366 (1997) MATHMathSciNetGoogle Scholar
  13. 13.
    Liu, Z.G.: Some operator identities and q-series transformation formulas. Discrete Math. 265, 119–139 (2003) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Liu, Z.G.: An identity of Andrews and the Askey–Wilson integral. Ramanujan J. 19, 115–119 (2009) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Ma, X.R.: Six-variable generalization of Ramanujan’s reciprocity theorem and its variants. J. Math. Anal. Appl. 353(1), 320–328 (2009) MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Masahiko, I.: Askey–Wilson type integrals associated with root systems. Ramanujan J. 12(2), 131–151 (2006) MATHMathSciNetGoogle Scholar
  17. 17.
    Rahman, M.: A simple evaluation of Askey and Wilson’s integral. Proc. Am. Math. Soc. 92, 413–417 (1984) MATHGoogle Scholar
  18. 18.
    Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Narosa, New Delhi (1988) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsSoochow UniversitySuzhouChina

Personalised recommendations