The Ramanujan Journal

, Volume 22, Issue 1, pp 101–117 | Cite as

Congruences modulo powers of 2 for a certain partition function



We study the divisibility properties of the coefficients c(n) defined by
$$\prod_{n=1}^\infty\frac{1}{(1-q^n)^2(1-q^{3n})^2}=\sum _{n=0}^\infty c(n)q^n.$$
An analogue of Ramanujan’s partition congruences is obtained for certain coefficients c(n) modulo powers of 2. Furthermore, an analogue of the identity that Hardy regarded as Ramanujan’s most beautiful is proved.
Ramanujan-type congruences Partition function 

Mathematics Subject Classification (2000)

05A15 05A30 05A40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews, G.E.: In: Rota, G.-C. (ed.) The Theory of Partitions. Encycl. Math. and Its Appl., vol. 2. Addison-Wesley, Reading (1976). (Reissued: Cambridge University Press, Cambridge, 1998) Google Scholar
  2. 2.
    Atkin, A.O.L.: Proof of a conjecture of Ramanujan. Glasg. Math. J. 8, 14–32 (1967) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Berndt, B.C., Ono, K.: Ramanujan’s unpublished manuscript on the partition and tau functions with proofs and commentary. Sémin. Lothar. Comb. 42, 63 (1999) MathSciNetGoogle Scholar
  4. 4.
    Chan, H.-C.: Ramanujan’s cubic continued fraction and a generalization of his “most beautiful identity”. Int. J. Number Theory (to appear) Google Scholar
  5. 5.
    Chan, H.-C.: Ramanujan’s cubic continued fraction and Ramanujan type congruences for a certain partition function. Int. J. Number Theory (to appear) Google Scholar
  6. 6.
    Cooper, S.: Series and iterations for 1/π. Acta Arith. (to appear) Google Scholar
  7. 7.
    Hirschhorn, M.D., Hunt, D.C.: A simple proof of the Ramanujan conjecture for powers of 5. J. Reine Angew. Math. 326, 1–17 (1981) MATHMathSciNetGoogle Scholar
  8. 8.
    Kim, B.: A crank analog on a certain kind of partition function arising from the cubic continued fraction. Preprint Google Scholar
  9. 9.
    Knopp, M.I.: Modular Functions in Analytic Number Theory. Markham Publ. Co., Chicago (1970) MATHGoogle Scholar
  10. 10.
    Ramanujan, S.: Some properties of p(n), the number of partitions of n. Proc. Camb. Philos. Soc. 19, 207–210 (1919) MATHGoogle Scholar
  11. 11.
    Ramanujan, S.: Collected Papers. AMS-Chelsea, Providence (2000) MATHGoogle Scholar
  12. 12.
    Ramanujan, S.: The Lost Notebook and Other Unpublished Papers. Narosa, New Delhi (1988) Google Scholar
  13. 13.
    Sinick, J.: Ramanujan congruences for a class of eta quotients. Int. J. Number Theory (to appear) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.University of Illinois at SpringfieldSpringfieldUSA
  2. 2.Institute of Information and Mathematical SciencesMassey UniversityAucklandNew Zealand

Personalised recommendations