The Ramanujan Journal

, Volume 23, Issue 1–3, pp 107–126 | Cite as

The doubloon polynomial triangle

Article

Abstract

The doubloon polynomials are generating functions for a class of combinatorial objects called normalized doubloons by the compressed major index. They provide a refinement of the q-tangent numbers and also involve two major specializations: the Poupard triangle and the Catalan triangle.

Keywords

Doubloon polynomials Doubloon polynomial triangle Poupard triangle Catalan triangle Reduced tangent numbers 

Mathematics Subject Classification (2000)

05A15 05A30 33B10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Callan, D.: A reference given in On-Line Encyclopedia of Integer Sequences for the sequence A009766 Google Scholar
  2. 2.
    Carlitz, L.: q-Bernoulli and Eulerian numbers. Trans. Am. Math. Soc. 76, 332–350 (1954) MATHGoogle Scholar
  3. 3.
    Carlitz, L.: A combinatorial property of q-Eulerian numbers. Am. Math. Mon. 82, 51–54 (1975) MATHCrossRefGoogle Scholar
  4. 4.
    Deutsch, E.: A reference given in On-Line Encyclopedia of Integer Sequences for the sequence A009766 Google Scholar
  5. 5.
    Foata, D., Han, G.-N.: Word straightening and q-Eulerian calculus. In: Ismail, M.E.H., Stanton, D.W. (eds.) Contemporary Mathematics. q-Series from a Contemporary Perspective, vol. 254, pp. 141–156. AMS, Providence (2000) Google Scholar
  6. 6.
    Foata, D., Han, G.-N.: Doubloons and new q-tangent numbers. Preprint, 17 p. (2008) Google Scholar
  7. 7.
    Foata, D., Schützenberger, M.-P.: Nombres d’Euler et permutations alternantes. Manuscript (unabridged version), 71 p., University of Florida, Gainesville (1971). http://igd.univ-lyon1.fr/~slc/books/index.html
  8. 8.
    Foata, D., Schützenberger, M.-P.: Nombres d’Euler et permutations alternantes. In: Srivastava, J.N., et al. (eds.) A Survey of Combinatorial Theory, pp. 173–187. North-Holland, Amsterdam (1973) Google Scholar
  9. 9.
    Foata, D., Strehl, V.: Euler numbers and variations of permutations. In: Colloquio Internazionale sulle Teorie Combinatorie, 1973, Tome I. Atti dei Convegni Lincei, vol. 17, pp. 119–131. Accademia Nazionale dei Lincei, Rome (1976) Google Scholar
  10. 10.
    Foata, D., Schützenberger, M.-P.: Major index and inversion number of permutations. Math. Nachr. 83, 143–159 (1978) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Graham, R., Zang, N.: Enumerating split-pair arrangements. J. Comb. Theory, Ser. A 115, 293–303 (2008) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Han, G.-N.: Calcul Denertien. Thèse de Doctorat, Publ. l’I.R.M.A., Strasbourg, 476/TS-29 (1991), 119 p. http://www-irma.u-strasbg.fr/~guoniu/papers/p05these.pdf
  13. 13.
    Han, G.-N.: Une courte démonstration d’un résultat sur la Z-statistique. C. R. Acad. Sci. Paris Sér. I 314, 969–971 (1992) MATHGoogle Scholar
  14. 14.
    Han, G.-N.: Une transformation fondamentale sur les réarrangements de mots. Adv. Math. 105(1), 26–41 (1994) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Poupard, C.: Deux propriétés des arbres binaires ordonnés stricts. Eur. J. Comb. 10, 369–374 (1989) MATHMathSciNetGoogle Scholar
  16. 16.
    Sloane, N.J.A.: On-line Encyclopedia of Integer Sequences Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institut LothaireStrasbourgFrance
  2. 2.I.R.M.A. UMR 7501Université Louis Pasteur et CNRSStrasbourgFrance

Personalised recommendations