The Ramanujan Journal

, Volume 22, Issue 1, pp 55–99

The evaluation of Tornheim double sums. Part 2



We provide an explicit formula for the Tornheim double series T(a,0,c) in terms of an integral involving the Hurwitz zeta function. For integer values of the parameters, a=m, c=n, we show that in the most interesting case of even weight N:=m+n the Tornheim sum T(m,0,n) can be expressed in terms of zeta values and the family of integrals
$$\int_{0}^{1}\log\Gamma(q)B_{k}(q)\operatorname{Cl}_{l+1}(2\pi q)\,dq,\vspace*{-3pt}$$
with k+l=N, where Bk(q) is a Bernoulli polynomial and Cl l+1(x) is a Clausen function.


Hurwitz zeta function Tornheim sum Witten zeta function 

Mathematics Subject Classification (2000)

33E20 11M06 11M35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borwein, D., Borwein, J.M., Girgensohn, R.: Explicit evaluation of Euler sums. Proc. Edinb. Math. Soc. 38, 277–294 (1995) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Borwein, J.M., Bailey, D.H., Girgensohn, R.: Experimentation in Mathematics: Computational Paths to Discovery, 1st edn. A.K. Peters, Wellesley (2004) MATHGoogle Scholar
  3. 3.
    Borwein, J.M., Bradley, D.: Thirty-two Goldbach variations. Int. J. Number Theory 2, 65–103 (2006) MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Espinosa, O., Moll, V.: On some definite integrals involving the Hurwitz zeta function. Part 1. Ramanujan J. 6, 159–188 (2002) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Espinosa, O., Moll, V.: On some definite integrals involving the Hurwitz zeta function. Part 2. Ramanujan J. 6, 449–468 (2002) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Espinosa, O., Moll, V.: A generalized polygamma function. Integral Transf. Spec. Funct. 15, 101–115 (2004) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Espinosa, O., Moll, V.: The evaluation of Tornheim double sums. Part 1. J. Number Theory 116, 200–229 (2006) MATHMathSciNetGoogle Scholar
  8. 8.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic Press, New York (2007). Edited by A. Jeffrey and D. Zwillinger Google Scholar
  9. 9.
    Granville, A.: A decomposition of Riemann’s zeta function. In: London Mathematical Society Lecture Notes, vol. 247, pp. 95–101 (1997) Google Scholar
  10. 10.
    Huard, J., Williams, K., Zhang, N.: On Tornheim’s double series. Acta Arith. 75, 105–117 (1996) MATHMathSciNetGoogle Scholar
  11. 11.
    Tornheim, L.: Harmonic double series. Am. J. Math. 303–314 (1950) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidad Téc. Federico Santa MaríaValparaísoChile
  2. 2.Department of MathematicsTulane UniversityNew OrleansUSA

Personalised recommendations