The Ramanujan Journal

, Volume 22, Issue 1, pp 55–99 | Cite as

The evaluation of Tornheim double sums. Part 2

  • Olivier EspinosaEmail author
  • Victor H. Moll


We provide an explicit formula for the Tornheim double series T(a,0,c) in terms of an integral involving the Hurwitz zeta function. For integer values of the parameters, a=m, c=n, we show that in the most interesting case of even weight N:=m+n the Tornheim sum T(m,0,n) can be expressed in terms of zeta values and the family of integrals
$$\int_{0}^{1}\log\Gamma(q)B_{k}(q)\operatorname{Cl}_{l+1}(2\pi q)\,dq,\vspace*{-3pt}$$
with k+l=N, where B k (q) is a Bernoulli polynomial and Cl l+1(x) is a Clausen function.


Hurwitz zeta function Tornheim sum Witten zeta function 

Mathematics Subject Classification (2000)

33E20 11M06 11M35 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borwein, D., Borwein, J.M., Girgensohn, R.: Explicit evaluation of Euler sums. Proc. Edinb. Math. Soc. 38, 277–294 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Borwein, J.M., Bailey, D.H., Girgensohn, R.: Experimentation in Mathematics: Computational Paths to Discovery, 1st edn. A.K. Peters, Wellesley (2004) zbMATHGoogle Scholar
  3. 3.
    Borwein, J.M., Bradley, D.: Thirty-two Goldbach variations. Int. J. Number Theory 2, 65–103 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Espinosa, O., Moll, V.: On some definite integrals involving the Hurwitz zeta function. Part 1. Ramanujan J. 6, 159–188 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Espinosa, O., Moll, V.: On some definite integrals involving the Hurwitz zeta function. Part 2. Ramanujan J. 6, 449–468 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Espinosa, O., Moll, V.: A generalized polygamma function. Integral Transf. Spec. Funct. 15, 101–115 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Espinosa, O., Moll, V.: The evaluation of Tornheim double sums. Part 1. J. Number Theory 116, 200–229 (2006) zbMATHMathSciNetGoogle Scholar
  8. 8.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic Press, New York (2007). Edited by A. Jeffrey and D. Zwillinger Google Scholar
  9. 9.
    Granville, A.: A decomposition of Riemann’s zeta function. In: London Mathematical Society Lecture Notes, vol. 247, pp. 95–101 (1997) Google Scholar
  10. 10.
    Huard, J., Williams, K., Zhang, N.: On Tornheim’s double series. Acta Arith. 75, 105–117 (1996) zbMATHMathSciNetGoogle Scholar
  11. 11.
    Tornheim, L.: Harmonic double series. Am. J. Math. 303–314 (1950) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Departamento de FísicaUniversidad Téc. Federico Santa MaríaValparaísoChile
  2. 2.Department of MathematicsTulane UniversityNew OrleansUSA

Personalised recommendations