The Ramanujan Journal

, 20:215 | Cite as

An algorithmic approach to Ramanujan’s congruences

Article

Abstract

In this paper we present an algorithm that takes as input a generating function of the form \(\prod_{\delta|M}\prod_{n=1}^{\infty}(1-q^{\delta n})^{r_{\delta}}=\sum_{n=0}^{\infty}a(n)q^{n}\) and three positive integers m,t,p, and which returns true if \(a(mn+t)\equiv0\pmod{p},n\geq0\), or false otherwise. Our method builds on work by Rademacher (Trans. Am. Math. Soc. 51(3):609–636, 1942), Kolberg (Math. Scand. 5:77–92, 1957), Sturm (Lecture Notes in Mathematics, pp. 275–280, Springer, Berlin/Heidelberg, 1987), Eichhorn and Ono (Proceedings for a Conference in Honor of Heini Halberstam, pp. 309–321, 1996).

Keywords

Partition congruences Number theoretic algorithm Modular forms 

Mathematics Subject Classification (2000)

11P83 11P82 

References

  1. 1.
    Andrews, G.E., Paule, P.: MacMahon’s partition analysis XI: broken diamonds and modular forms. Acta Arith. 126, 281–294 (2007) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chan, S.H.: Some congruences for Andrews-Paule’s broken 2-diamond partitions. Discrete Math. 308(23), 5735–5741 (2008) MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Eichhorn, D., Ono, K.: Congruences for partition functions. In: Proceedings for a Conference in Honor of Heini Halberstam, pp. 309–321 (1996) Google Scholar
  4. 4.
    Eichhorn, D., Sellers, J.A.: Computational proofs of congruences for 2-colored Frobenius partitions. Int. J. Math. Math. Sci. 29, 333–340 (2002) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Hirschhorn, M.D., Sellers, J.A.: On recent congruence results of Andrews and Paule. Bull. Aust. Math. Soc. 75, 121–126 (2007) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kolberg, O.: Some identities involving the partition function. Math. Scand. 5, 77–92 (1957) MATHMathSciNetGoogle Scholar
  7. 7.
    Kolitsch, L.: A congruence for generalized Frobenius partitions with 3 colors modulo powers of 3. In: Analytic Number Theory, Proceedings of a Conference in Honor of Paul Bateman, pp. 343–348 (1990) Google Scholar
  8. 8.
    Lewis, R.: The components of modular forms. J. Lond. Math. Soc. 52, 245–254 (1995) MATHGoogle Scholar
  9. 9.
    Lovejoy, J.: Ramanujan-type congruences for three colored Frobenius partitions. J. Number Theory 85, 283–290 (2000) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Newman, M.: Construction and application of a class of modular functions 2. Proc. Lond. Math. Soc. 3(9), 373–387 (1959) CrossRefGoogle Scholar
  11. 11.
    Ono, K.: Congruences for Frobenius partitions. J. Number Theory 57(1), 331–347 (1996) CrossRefGoogle Scholar
  12. 12.
    Rademacher, H.: The Ramanujan identities under modular substitutions. Trans. Am. Math. Soc. 51(3), 609–636 (1942) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Rose, H.E.: A Course in Number Theory. Oxford Science Publications. Oxford University Press, London (1994) MATHGoogle Scholar
  14. 14.
    Serre, J.P.: A Course in Arithmetic. Springer, New York (1996) Google Scholar
  15. 15.
    Shimura, G.: Introduction to the Arithmetic Theory of Automorphic Functions. Princeton University Press, Princeton (1971) MATHGoogle Scholar
  16. 16.
    Stein, W.A.: Computing with modular forms. Available from http://modular.fas.harvard.edu/257/notes/257.pdf
  17. 17.
    Sturm, J.: On the congruence of modular forms. In: Lecture Notes in Mathematics, pp. 275–280. Springer, Berlin/Heidelberg (1987) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Research Institute for Symbolic Computation (RISC)Johannes Kepler UniversityLinzAustria

Personalised recommendations