The Ramanujan Journal

, Volume 16, Issue 3, pp 247–270 | Cite as

Double integrals and infinite products for some classical constants via analytic continuations of Lerch’s transcendent



The two-fold aim of the paper is to unify and generalize on the one hand the double integrals of Beukers for ζ(2) and ζ(3), and of the second author for Euler’s constant γ and its alternating analog ln (4/π), and on the other hand the infinite products of the first author for e, of the second author for π, and of Ser for e γ . We obtain new double integral and infinite product representations of many classical constants, as well as a generalization to Lerch’s transcendent of Hadjicostas’s double integral formula for the Riemann zeta function, and logarithmic series for the digamma and Euler beta functions. The main tools are analytic continuations of Lerch’s function, including Hasse’s series. We also use Ramanujan’s polylogarithm formula for the sum of a particular series involving harmonic numbers, and his relations between certain dilogarithm values.


Lerch transcendent Zeta function Infinite product Double integral Polylogarithm 

Mathematics Subject Classification (2000)

11M06 11M35 11Y60 33B15 33B30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bailey, D.H., Borwein, P., Plouffe, S.: On the rapid computation of various polylogarithmic constants. Math. Comput. 66, 903–913 (1997) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bateman, H., Erdelyi, A.: Higher Transcendental Functions, vol. 1. McGraw-Hill, New York (1953) Google Scholar
  3. 3.
    Berndt, B.C.: Ramanujan’s Notebooks, Parts I and IV. Springer, New York (1985, 1994) Google Scholar
  4. 4.
    Beukers, F.: A note on the irrationality of ζ(2) and ζ(3). Bull. Lond. Math. Soc. 11, 268–272 (1979) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chapman, R.: A proof of Hadjicostas’s conjecture. Preprint; available at (2004)
  6. 6.
    Emery, M.: On a multiple harmonic power series. Preprint; available at (2004)
  7. 7.
    Finch, S.: Mathematical Constants. Cambridge University Press, Cambridge (2003) MATHGoogle Scholar
  8. 8.
    Goldschmidt, C., Martin, J.B.: Random recursive trees and the Bolthausen-Sznitman coalescent. Electr. J. Probab. 10, 718–745 (2005) MathSciNetGoogle Scholar
  9. 9.
    Hadjicostas, P.: Some generalizations of Beukers’ integrals. Kyungpook Math. J. 42, 399–416 (2002) MATHMathSciNetGoogle Scholar
  10. 10.
    Hadjicostas, P.: A conjecture-generalization of Sondow’s formula. Preprint; available at (2004)
  11. 11.
    Hadjicostas, P.: Personal communication (1 June 2004) Google Scholar
  12. 12.
    Hasse, H.: Ein Summierungsverfahren für die Riemannsche ζ-Reihe. Math. Z. 32, 458–464 (1930) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Lewin, L.: Polylogarithms and Associated Functions. Elsevier, New York (1981) MATHGoogle Scholar
  14. 14.
    Lewin, L. (ed.): Structural Properties of Polylogarithms. Mathematical Surveys and Monographs, vol. 37. American Mathematical Society, Providence (1991) MATHGoogle Scholar
  15. 15.
    Milnor, J.: On polylogarithms, Hurwitz zeta functions, and the Kubert identities. Enseign. Math. 29, 281–322 (1983) MATHMathSciNetGoogle Scholar
  16. 16.
    Ramanujan, S.: Collected Papers of Srinivasa Ramanujan. Hardy, G.H., et al. (eds.) AMS/Chelsea, Providence (2000) Google Scholar
  17. 17.
    Ser, J.: Sur une expression de la function ζ(s) de Riemann. C. R. Acad. Sci. Paris Sér. I Math. 182, 1075–1077 (1926) MATHGoogle Scholar
  18. 18.
    Somos, M.: Several constants related to quadratic recurrences. Unpublished note (1999) Google Scholar
  19. 19.
    Sondow, J.: Analytic continuation of Riemann’s zeta function and values at negative integers via Euler’s transformation of series. Proc. Am. Math. Soc. 120, 421–424 (1994) MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Sondow, J.: Criteria for irrationality of Euler’s constant. Proc. Am. Math. Soc. 131, 3335–3344 (2003) MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Sondow, J.: An infinite product for e γ via hypergeometric formulas for Euler’s constant γ. Preprint; available at (2003)
  22. 22.
    Sondow, J.: Double integrals for Euler’s constant and ln (4/π) and an analog of Hadjicostas’s formula. Am. Math. Mon. 112, 61–65 (2005) MATHMathSciNetGoogle Scholar
  23. 23.
    Sondow, J.: A faster product for π and a new integral for ln (π/2). Am. Math. Mon. 112, 729–734 (2005) MATHMathSciNetCrossRefGoogle Scholar
  24. 24.
    Spanier, J., Oldham, K.B.: An Atlas of Functions. Hemisphere, New York (1987) MATHGoogle Scholar
  25. 25.
    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1996) MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.SaragossaSpain
  2. 2.New YorkUSA

Personalised recommendations