Advertisement

The Ramanujan Journal

, Volume 17, Issue 3, pp 369–385 | Cite as

An idea on some of Ramanujan’s continued fraction identities

  • Lisa Lorentzen
Article
  • 97 Downloads

Abstract

We present an idea on how Ramanujan found some of his beautiful continued fraction identities. Or more to the point: why he chose the ones he wrote down among all possible identities.

Keywords

Continued fractions Convergence 

Mathematics Subject Classification (2000)

40A15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bauer, G.: Von einem Kettenbruch von Euler und einem Theorem von Wallis. Abh. Kgl. Bayr. Akad. Wiss., München, 2. Klasse 11, 99–116 (1872) Google Scholar
  2. 2.
    Berndt, B.C.: Ramanujan’s Notebook. Part 2. Springer, Berlin (1989) Google Scholar
  3. 3.
    Berndt, B.: Ramanujan’s Notebook. Part 5. Springer, Berlin (1995) Google Scholar
  4. 4.
    Jacobsen, L.: General convergence of continued fractions. Trans. Am. Math. Soc. 294(2), 477–485 (1986) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Jacobsen, L.: Composition of linear fractional transformations in terms of tail sequences. Proc. Am. Math. Soc. 97(1), 97–104 (1986) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Jacobsen, L.: On the Bauer-Muir transformation for continued fractions and its applications. J. Math. Anal. Appl. 152(2), 496–514 (1990) MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Lorentzen, L., Waadeland, H.: Continued Fractions with Applications. Elsevier, Amsterdam (1992) MATHGoogle Scholar
  8. 8.
    Muir, T.: A Theorem in Continuants. Philos. Mag. (5) 3, 137–138 (1877) Google Scholar
  9. 9.
    Thron, W.J.: On parabolic convergence regions for continued fractions. Math. Z. 69, 173–182 (1958) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Waadeland, H.: Tales about tails. Proc. Am. Math. Soc. 90, 57–64 (1984) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Division of Mathematical ScienceNorwegian Institute of TechnologyTrandheimNorway

Personalised recommendations