The Ramanujan Journal

, Volume 14, Issue 3, pp 361–378 | Cite as

Estimates for Wieferich numbers

  • William D. Banks
  • Florian Luca
  • Igor E. Shparlinski


We define Wieferich numbers to be those odd integers w≥3 that satisfy the congruence 2φ(w)≡1 (mod  w2). It is clear that the distribution of Wieferich numbers is closely related to the distribution of Wieferich primes, and we give some quantitative forms of this statement. We establish several unconditional asymptotic results about Wieferich numbers; analogous results for the set of Wieferich primes remain out of reach. Finally, we consider several modifications of the above definition and demonstrate that our methods apply to such sets of integers as well.


Wieferich primes 

Mathematics Subject Classification (2000)

11A07 11N25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agoh, T., Dilcher, K., Skula, L.: Fermat quotients for composite moduli. J. Number Theory 66, 29–50 (1997) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baker, R.C., Harman, G.: Shifted primes without large prime factors. Acta Arith. 83, 331–361 (1998) MATHMathSciNetGoogle Scholar
  3. 3.
    Balog, A.: The prime k-tuplets conjecture on average. In: Analytic Number Theory. Progress in Mathematics, vol. 85, pp. 47–75. Birkhäuser, Boston (1990) Google Scholar
  4. 4.
    Canfield, E.R., Erdős, P., Pomerance, C.: On a problem of Oppenheim concerning “Factorisatio Numerorum”. J. Number Theory 17, 1–28 (1983) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Crandall, R., Dilcher, K., Pomerance, C.: A search for Wieferich and Wilson primes. Math. Comput. 66, 433–449 (1997) MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Davenport, H.: Multiplicative Number Theory, 2nd edn. Springer, New York (1980) MATHGoogle Scholar
  7. 7.
    Dilcher, K.: Fermat numbers, Wieferich and Wilson primes: computations and generalizations. In: Proc. the Conf. on Public Key Cryptography and Computational Number Theory, Warsaw, 2000, pp. 29–48. de Gruyter, Berlin (2001) Google Scholar
  8. 8.
    Erdős, P., Granville, A., Pomerance, C., Spiro, C.: On the normal behavior of the iterates of some arithmetic functions. In: Analytic Number Theory, pp. 165–204. Birkhäuser, Boston (1990) Google Scholar
  9. 9.
    Franco, Z., Pomerance, C.: On a conjecture of Crandall concerning the qn+1 problem. Math. Comput. 64, 1333–1336 (1995) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Granville, A., Soundararajan, K.: A binary additive problem of Erdős and the order of 2mod p 2. Ramanujan J. 2, 283–298 (1998) MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Halberstam, H., Richert, H.-E.: Sieve Methods. Academic, London (1974) MATHGoogle Scholar
  12. 12.
    Hildebrand, A., Tenenbaum, G.: Integers without large prime factors. J. Theo. Nr. Bordx. 5, 411–484 (1993) MATHMathSciNetGoogle Scholar
  13. 13.
    Iwaniec, H., Pintz, J.: Primes in short intervals. Monatsh. Math. 98, 115–143 (1984) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Knauer, J., Richstein, J.: The continuing search for Wieferich primes. Math. Comput. 74, 1559–1563 (2005) MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Luca, F., Pomerance, C.: On some problems of Ma̧kowski–Schinzel and Erdős concerning the arithmetical functions φ and σ. Colloq. Math. 92, 111–130 (2002) MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Mohit, S., Murty, M.R.: Wieferich primes and Hall’s conjecture. C. R. Math. Acad. Sci., Soc. Roy. Can. 20, 29–32 (1998) MATHMathSciNetGoogle Scholar
  17. 17.
    Ribenboim, P.: 13 Lectures on Fermat’s Last Theorem. Springer, New York (1979) MATHGoogle Scholar
  18. 18.
    Silverman, J.H.: Wieferich’s criterion and the abc-conjecture. J. Number Theory 30, 226–237 (1988) MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Tenenbaum, G.: Introduction to Analytic and Probabilistic Number Theory. Cambridge Univ. Press, Cambridge (1995) Google Scholar
  20. 20.
    Wieferich, A.: Zum letzten Fermat’schen Theorem. J. Reine Angew. Math. 136, 293–302 (1909) MATHGoogle Scholar
  21. 21.
    Wirsing, E.: Über die Zahlen, deren Primteiler einer gegebenen Menge angehören. Arch. Math. 7, 263–272 (1956) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • William D. Banks
    • 1
  • Florian Luca
    • 2
  • Igor E. Shparlinski
    • 3
  1. 1.Department of MathematicsUniversity of MissouriColumbiaUSA
  2. 2.Instituto de MatemáticasUniversidad Nacional Autónoma de MéxicoMorelia, MichoacanMexico
  3. 3.Department of ComputingMacquarie UniversitySydneyAustralia

Personalised recommendations