The Ramanujan Journal

, Volume 11, Issue 3, pp 355–397 | Cite as

Cubic elliptic functions

Article

Abstract

The function
$$\displaylines{\displaystyle \Phi(\theta;q) = \theta + 3\sum_{k=1}^\infty\frac{\sin(2k\theta)q^k}{k(1+q^k+q^{2k})}}$$
occurs in one of Ramanujan’s inversion formulas for elliptic integrals. In this article, a common generalization of the cubic elliptic functions
$$\displaylines{g_1(\theta;q) = \frac{1}{6} + \sum_{k=1}^\infty \frac{q^k}{1+q^k+q^{2k}}\cos k\theta,\cr g_2(\theta;q) = \frac{1}{2} \frac{\sin \frac{\theta}{2}}{\sin \frac{3\theta}{2}} + \sum_{k=1}^\infty \frac{\chi_3(k)q^k}{1-q^k} \cos k\theta,} $$
is given. The function g1 is the derivative of Ramanujan’s function Φ (after rescaling), and χ3(n) = 0, 1 or −1 according as n≡ 0, 1 or 2 (mod 3), respectively, and |q| < 1. Many properties of the common generalization, as well as the functions g1 and g2, are proved.

Keywords

Eisenstein series Elliptic function Modular transformation Ramanujan Theta function Venkatachaliengar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, G.E., Askey, R., Roy, R.: Special Functions, Encyclopedia of Mathematics and its Applications, Vol. 71. Cambridge University Press, Cambridge (1999)Google Scholar
  2. 2.
    Berndt, B.C.: Ramanujan’s Notebooks, Part III. Springer-Verlag (1991)Google Scholar
  3. 3.
    Berndt, B.C.: Ramanujan’s Notebooks, Part V. Springer-Verlag (1998)Google Scholar
  4. 4.
    Berndt, B.C., Bhargava, S., Garvan, F.G.: Ramanujan’s theories of elliptic functions to alternative bases. Trans. Amer. Math. Soc. 347, 4163–4244 (1995) Revised in [Chapter 33, pp. 89–181]MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Borwein, J.M., Borwein, P.B.: A cubic counterpart of Jacobi’s identity and the AGM. Trans. Amer. Math. Soc. 323(2), 691–701 (1991)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Borwein, J.M., Borwein, P.B., Garvan, F.G.: Some cubic modular identities of Ramanujan. Trans. Amer. Math. Soc. 343(1), 35–47 (1994)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Chan, H.H., Liu, Z.-G.: Analogues of Jacobi’s inversion formula for the incomplete elliptic integral of the first kind. Adv. Math. 174, 69–88 (2003)MATHMathSciNetGoogle Scholar
  8. 8.
    Chandrasekharan, K. Elliptic Functions. Springer-Verlag, Berlin (1985)Google Scholar
  9. 9.
    Cooper, S.: The development of elliptic functions according to Ramanujan and Venkatachaliengar. In: Adiga, C., Somashekara, D.D. (eds.), Proceedings of The International Conference on the Works of Srinivasa Ramanujan, pp. 81–99. University of Mysore, Manasagangotri, Mysore - 570 006, India (2001). Available electronically at http://iims.massey.ac.nz/research/letters/(see vol. 1, 2000)
  10. 10.
    Cooper, S.: On sums of an even number of squares, and an even number of triangular numbers: An elementary approach based on Ramanujan’s 1Ψ1 summation formula. In: Berndt, B.C., Ono, K. (eds.), q-Series with Applications to Combinatorics, Number Theory and Physics Contemporary Mathematics, No. 291, American Mathematical Society, Providence, RI, 115–137 (2001)Google Scholar
  11. 11.
    Cooper, S.: Cubic theta functions. J. Comput. Appl. Math. 160, 77–94 (2003)MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Fine, N.J.: Basic Hypergeometric Series and Applications. Amer. Math. Society, Providence, RI (1988)Google Scholar
  13. 13.
    Hirschhorn, M., Garvan, F., Borwein, J.: Cubic analogues of the Jacobian theta functions θ(z,q). Can. J. Math. 45(4), 673–694 (1993)MATHMathSciNetGoogle Scholar
  14. 14.
    Knapp, A.W.: Elliptic curves. Mathematical Notes, vol. 40. Princeton University Press, Princeton, NJ (1992)Google Scholar
  15. 15.
    Knopp, M.I.: Modular functions in analytic number theory. Markham Publishing Co., Chicago, Ill (1970)Google Scholar
  16. 16.
    Liu, Z.-G.: Some Eisenstein series identities associated with the Borwein functions. In: Symbolic Computation, Number Theory, Special Functions, Physics and Combinatorics, pp. 147–169, Gainesville, FL (1999). Dev. Math., 4, Kluwer Acad. Publ., Dordrecht (2001)Google Scholar
  17. 17.
    Ramanujan, S.: On certain arithmetical functions. Trans. Camb. Phil. Soc. 22(9), 159–184 (1916). Reprinted in [136-162]Google Scholar
  18. 18.
    Ramanujan, S.: Notebooks (2 vol.). Tata Institute of Fundamental Research, Bombay (1957)Google Scholar
  19. 19.
    Ramanujan, S.: Collected Papers. AMS Chelsea Publishing, Providence, Rhode Island (2000)Google Scholar
  20. 20.
    Venkatachaliengar, K.: Development of Elliptic Functions According to Ramanujan. Department of Mathematics, Madurai Kamaraj University, Technical Report 2 (1988)Google Scholar
  21. 21.
    Whittaker, E.T., Watson, G.N.: A course of modern analysis. Reprint of the fourth (1927) edition. Cambridge University Press, Cambridge (1996)Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Institute of Information and Mathematical SciencesMassey University - AlbanyAucklandNew Zealand

Personalised recommendations