The Ramanujan Journal

, Volume 9, Issue 3, pp 271–288 | Cite as

The Multiple Gamma Function and Its Application to Computation of Series

  • V. S. Adamchik


The multiple gamma function Γ n , defined by a recurrence-functional equation as a generalization of the Euler gamma function, was originally introduced by Kinkelin, Glaisher, and Barnes around 1900. Today, due to the pioneer work of Conrey, Katz and Sarnak, interest in the multiple gamma function has been revived. This paper discusses some theoretical aspects of the Γ n function and their applications to summation of series and infinite products.


multiple gamma function Barnes function gamma function Riemann zeta function Hurwitz zeta function Stirling numbers Stieltjes constants Catalan’s constant harmonic numbers Glaisher’s constant 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.S. Adamchik and H.M. Srivastava, “Some series of the zeta and related functions,” Analysis (1998) 131–144.Google Scholar
  2. 2.
    T.M. Apostol, “Formulas for higher derivatives of the Riemann zeta function,” Math. Comp. 44 (1985), 223–232.Google Scholar
  3. 3.
    L. Bendersky, “Sur la fonction gamma généralisée,” Acta Math. 61 (1933), 263–322.Google Scholar
  4. 4.
    B. Berndt, Ramanujan’s Notebooks, Part I, Springer-Verlag, New York, 1985.Google Scholar
  5. 5.
    P. Borwein and W. Dykshoorn, “An interesting infinite product, J. Math. Anal. and Appl. 179 (1993), 203–207.Google Scholar
  6. 6.
    J. Choi, H.M. Srivastava and V.S.Adamchik, “Multiple gamma and related functions,” Appl. Math. and Comp. 134 (2003), 515–533.Google Scholar
  7. 7.
    K. Dilcher, “On generalized gamma functions related to the Laurent coefficients of the Riemann zeta function,” Aequationes Math. 179 (1994), 55–85.Google Scholar
  8. 8.
    O. Espinosa and V. Moll, “On some integrals involving the Hurwitz zeta function,” The Ramanujan Journal. 6 (2002), 159–188.Google Scholar
  9. 9.
    J.P. Keating and N.C. Snaith, “Random matrix theory and \(\zeta (\frac{1}{2}+i t)\), Commun. Math. Phys. 214 (2000), 57–89.Google Scholar
  10. 10.
    J.P. Keating and N.C. Snaith, “Random matrix theory and L-functions at \(s=\frac{1}{2}\),” Commun. Math. Phys. 214 (2000), 91–110.Google Scholar
  11. 11.
    W. Magnus, F. Oberhettinger and R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Springer, Berlin, 1966.Google Scholar
  12. 12.
    Z.A. Melzak, “Infinite products for π e and π/e,” MAA Monthly 68 (1961), 39–41.Google Scholar
  13. 13.
    D.S. Mitrinovic, “Sur une classe de nombres reliés aux nombres de Stirling,” C.R. Acad. Sci. Paris 252 (1961), 2354–2356.Google Scholar
  14. 14.
    H.L. Montgomery, “The pair correlation of the zeta function,” Proc. Symp. Pure Math. 24 (1973), 181–193.Google Scholar
  15. 15.
    A.M. Odlyzko, “The 1022-nd zero of the Riemann zeta function,” Dynamical, Spectral, and Arithmetic Zeta Functions, M. van Frankenhuysen and M.L. Lapidus, editors, Amer. Math. Soc., Contemporary Math. series, 290 (2001), 139–144.Google Scholar
  16. 16.
    K.N. Rosen and et., Handbook of Discrete and Combinatorial Mathematics, CRC Press, New York, 2000.Google Scholar
  17. 17.
    P. Sarnak, “Quantum chaos, symmetry and zeta functions,” Curr. Dev. Math. (1997), 84–115.Google Scholar
  18. 18.
    N. Sloan, The Online Encyclopedia of Integer Sequences,
  19. 19.
    I. Vardi, “Determinants of laplacians and multipe gamma functions,” SIAM J. Math. Anal. 19 (1988), 493–507.Google Scholar
  20. 20.
    E.T. Whittaker and G.N. Watson, A Course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, Fourth Ed., Cambridge University Press, Cambridge, 1963.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Computer ScienceCarnegie Mellon UniversityPittsburghPennsylvania

Personalised recommendations