The Ramanujan Journal

, Volume 9, Issue 1–2, pp 251–264 | Cite as

Some Open Questions

Article
  • 77 Downloads

Abstract

In this paper, several longstanding problems that the author has tried to solve, are described. An exposition of these questions was given in Luminy in January 2002, and now three years later the author is pleased to report some progress on a couple of them.

Keywords

highly composite numbers abundant numbers arithmetic functions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Alaoglu and P. Erdős, “On highly composite and similar numbers,” Trans. Amer. Math. Soc. 56 (1944), 448–469.Google Scholar
  2. 2.
    R.C. Baker, G. Harman, and J. Pintz, “The difference between consecutive primes, II,” Proc. London Math. Soc. 83(3) (2001), 532–562.Google Scholar
  3. 3.
    G. Bessi et J.-L. Nicolas, “Nombres 2-hautement composés,” J. Math. pures et appl. 56 (1977), 307–326.Google Scholar
  4. 4.
    R. de la Bretèche, “Sur une classe de fonctions arithmétiques liées aux diviseurs d’un entier,” Indag. Math. N.S. 11 (2000), 437–452.Google Scholar
  5. 5.
    R. de la Bretèche, C. Pomerance, and G. Tenenbaum, “Products of ratios of consecutive integers,” 9(1/2) (2005).Google Scholar
  6. 6.
    H. Delange, Sur la fonction sommatoire de la fonction “Somme des Chiffres,” Enseignement Math. 21(2) (1975), 31–47.Google Scholar
  7. 7.
    M. Deléglise, J.-L. Nicolas, and P. Zimmermann “Landau’s function for one million billions,” in preparation.Google Scholar
  8. 8.
    J. Dixmier and J.-L. Nicolas, “Parité de certains nombres de partitions, Travaux Mathématiques,” Publication du Centre Universitaire de Luxembourg 13 (2002), 93–153.Google Scholar
  9. 9.
    P. Erdős, “On highly composite numbers,” J. London Math. Soc. 19 (1944), 130–133.Google Scholar
  10. 10.
    P. Erdős et J.-L. Nicolas, “Répartition des nombres superabondants,” Bull. Soc. Math. France 103 (1975), 65–90.Google Scholar
  11. 11.
    P. Erdős et J.-L. Nicolas, “On functions connected with prime divisors of an integer,” in, Number Theory and Applications, (Banff 1988), (R.A. Mollin, ed.) Kluwer Academic Publishers, 1989, pp. 381–391.Google Scholar
  12. 12.
    P. Erdős and P. Turán, “On some problems of a statistical group theory, IV,” Acta Math. Acad. Sci. Hungar. 19 (1968), 413–435.CrossRefGoogle Scholar
  13. 13.
    N. Feldmann, “Improved estimate for a linear form of the logarithms of algebraic numbers,” Math. Sb. 77(119), (1968), 423–436. Math. USSR-Sb. 6 (1968), 393–406.Google Scholar
  14. 14.
    P. Flajolet, P. Grabner, P. Kirschenhofer, H. Prodinger, and R.F. Tichy, “Mellin transforms and asymptotics digital sums,” Theoretical Computer Science 123 (1994), 291–314.CrossRefGoogle Scholar
  15. 15.
    P. Grabner, P. Kirschenhofer, and H. Prodinger, “The sum-of-digits function for complex bases,” J. London Math. Soc. 57(2) (1998), 20–40.CrossRefGoogle Scholar
  16. 16.
    J. Grantham, “The largest prime dividing the maximal order of an element of Sn,” Math. Comp. 64 (1995), 407–410.Google Scholar
  17. 17.
    G.H. Hardy and S. Ramanujan, “Asymptotic formulæ for the distribution of integers of various types,” Proc. London Math. Soc. 16(2), (1917), 112–132 and Collected Papers of S. Ramanujan, Cambridge University Press, 245–261.Google Scholar
  18. 18.
    G.H. Hardy and E.M. Wright, “An introduction to the theory of numbers,” 4th edition, Oxford at the Clarendon Press, 1964.Google Scholar
  19. 19.
    G. Hoheisel, “Primzahlproblem in der Analysis,” Berlin Math. Ges. Sitzungsber. (1930), 550–558.Google Scholar
  20. 20.
    E. Landau, “Über die Maximalordnung der Permutationen gegebenen Grades,” Archiv. der Math. und Phys., Sér 3 5 (1903), 92–103. Handbuch der Lehre von der Verteilung der Primzahlen, I, 2nd ed, Chelsea, New-York (1953), 222–229.Google Scholar
  21. 21.
    J.-P. Massias, “Majoration explicite de l’ordre maximum d’un élément du groupe symétrique,” Ann. Fac. Sci. Toulouse Math. 6 (1984), 269–280.Google Scholar
  22. 22.
    J.-P. Massias and J.-L. Nicolas et G. Robin, “Evaluation asymptotique de l’ordre maximum d’un élément du groupe symétrique,” Acta Arithmetica 50 (1988), 221–242.Google Scholar
  23. 23.
    J.-P. Massias, J.-L. Nicolas, and G. Robin, “Effective bounds for the maximal order of an element in the symmetric group,” Math. Comp. 53 (1989), 665–678.Google Scholar
  24. 24.
    W. Miller, “The Maximal Order of an Element of a Finite Symmetric Group,” Amer. Math. Monthly 94 (1987), 497–506.Google Scholar
  25. 25.
    H.L. Montgomery, “Ten lectures on the interface between analytic number theory and harmonic analysis, CBMS 84, American Mathematical Society, 1994.Google Scholar
  26. 26.
    F. Morain, “Table de g(n) pour 1≤ n≤ 32000,” document interne de l’INRIA, (1988).Google Scholar
  27. 27.
    J.-L. Nicolas, “Sur l’ordre maximum d’un élément dans le groupe Sn des permutations,” Acta Arithmetica 14 (1968), 315–332.Google Scholar
  28. 28.
    , “Ordre maximal d’un élément du groupe des permutations et highly composite numbers,” Bull. Soc. Math. France 97 (1969), 129–191.Google Scholar
  29. 29.
    , “Calcul de l’ordre maximum d’un élément du groupe symétrique Sn,” Rev. Française Informat. Recherche Opérationnelle, Sér. R-2 3 (1969), 43–50.Google Scholar
  30. 30.
    J.-L. Nicolas, “Répartition des nombres hautement composés de Ramanujan,” Can. J. Math. 23 1971, 116–130.Google Scholar
  31. 31.
    J.-L. Nicolas, “On highly composite numbers,” in Ramanujan revisited (G.E. Andrews, R.A. Askey, B.C. Berndt, K.G. Ramanathan, and R.A. Rankin, eds.) Academic Press, 1988, pp. 215–244.Google Scholar
  32. 32.
    J.-L. Nicolas, “Nombres hautement composés,” Acta Arithmetica 49 (1988), 395–412.Google Scholar
  33. 33.
    J.-L. Nicolas, “Quelques inégalités reliant le nombre et la somme des diviseurs d’un entier, en preparation.Google Scholar
  34. 34.
    J.-L. Nicolas, “On Landau’s function g(n),” The Mathematics of Paul Erdős, vol. I (R.L. Graham and J. Nešetřil eds.), Springer Verlag, Algorithms and Combinatorics 13 (1997), 228–240.Google Scholar
  35. 35.
    S. Ramanujan, “Highly composite numbers,” Proc. London Math. Soc. Serie 2(14), (1915), 347–409. Collected papers, Cambridge University Press (1927), 78–128.Google Scholar
  36. 36.
    S. Ramanujan, “Highly composite numbers, annotated by J.-L. Nicolas and G. Robin,” The Ramanujan J. 1 (1997), 119–153.CrossRefGoogle Scholar
  37. 37.
    G. Robin, “Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction ω(N),” nombre de diviseurs premiers de N, Acta Arithmetica 42 (1983), 367–389.Google Scholar
  38. 38.
    G. Robin, “Méthodes d’optimisation pour un problème de théorie des nombres,” R.A.I.R.O. Informatique Théorique 17 (1983), 239–247.Google Scholar
  39. 39.
    G. Robin, “Sur une famille de nombres hautement composés supérieurs,” Studia Scientarum Mathematicarum Hungarica 23 (1988), 61–71.Google Scholar
  40. 40.
    J.B. Rosser and L. Schoenfeld, “Approximate Formulas for Some Functions of Prime Numbers,” Illinois. J. Math 6 (1962), 64–94.Google Scholar
  41. 41.
    S.M. Shah, “An inequality for the arithmetical function g(x),” J. Indian Math. Soc. 3 (1939), 316–318.Google Scholar
  42. 42.
    M. Szalay, “On the maximal order in Sn and Sn^*,” Acta Arithmetica 37 (1980), 321–331.Google Scholar
  43. 43.
    G. Tenenbaum, “Introduction à la théorie analytique et probabiliste des nombres,” S.M.F., Paris, (1995). Introduction to analytic and probabilistic number theory, Cambridge studies in advanced mathematics, Cambridge University Press, 46 1995.Google Scholar
  44. 44.
    G. Tenenbaum, “Une inégalité de Hilbert pour les diviseurs,” Indag. Math., N.S. 2(1991), 105–114.Google Scholar
  45. 45.
    T.H. Tran, “Nombres hautement composés généralisés,” C. R. Acad. Sci. Paris, Sér. A–B 282 (1976), 939–942.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Institut Camille Jordan, UMR 5208, Mathématiques, Bât. Doyen Jean BraconnierUniversité Claude Bernard (Lyon 1)Villeurbanne cédexFrance

Personalised recommendations