Advertisement

Karl Menger’s modernist journey: art, mathematics and mysticism, 1920–1955

  • Robert LeonardEmail author
Article

Abstract

In addition to being an accomplished mathematician and to being involved in the economic and philosophical circles of interwar Vienna, Karl Menger (1902–1985) had a lively interest in Modern Art. He appreciated the work of Hans Masereel, the Belgian graphic novelist; Peter Alma, the Dutchman associated with De Stijl; and the German Gerd Arntz, Otto Neurath’s right-hand man and the artist behind the Isotype system of pictorial education. He particularly liked the work of De Stijl’s Piet Mondrian, even making a pilgrimage to his studio in Paris in the late 1920’s. Menger perceived connections between the shift towards abstraction in such artwork and the rise of abstraction in his own field of mathematics. He favoured the clarity evident in such images, but, as he was keen to point out, not necessarily their political connotations or mystical underpinnings. This paper traces Menger’s involvement with art and aesthetics from his early days as a student in Vienna and the Netherlands to his arrival as an intellectual émigré in the American Midwest.

Keywords

Karl Menger (1902 - 1985) Interwar Vienna Modern art Mathematics Abstraction Peter Alma De Stijl Piet Mondrian Mysticism George Birkhoff Otto Neurath 

Notes

References

  1. Beham, B. (2012). Die Genese des Mengerschen Dimensionsbegriffes im Spannungsverhältnis von Ökonomie, Mathematik und Philosophie. Unpublished dissertation, University of Vienna.Google Scholar
  2. Birkhoff, G. D. (1929). Quelques éléments mathématiques de l’art. Atti del Congresso Internazionale dei Mathematici, Bologna, I, 315–333.Google Scholar
  3. Birkhoff, G.D. (1931a). Une Théorie quantitative de l’esthétique. Bulletin de la société française de Philosophie, Séance du 6 juin.Google Scholar
  4. Birkhoff, G. D. (1931b). A mathematical approach to aesthetics. Scientia, 50, 133–146.Google Scholar
  5. Birkhoff, G.D. (1931c). Polygonal Forms. Sixth yearbook of the National Council of teachers of Mathematics, New YorkGoogle Scholar
  6. Birkhoff, G. D. (1932). A Mathematical Theory of Aesthetics and its Applications to Poetry and Music (The Rice Institute Pamphlet) (Vol. 19). Houston: Rice Institute.Google Scholar
  7. Birkhoff, G. D. (1933). Aesthetic measure. Cambridge: Harvard University, Press.CrossRefGoogle Scholar
  8. Bois, Y.-A. (1982). L’Atelier de Mondrian. Paris: Macula.Google Scholar
  9. Boltzmann, L. (1925, [1905]). Reise eines deutschen Professors ins Eldorado. In Populäre Schriften (3rd ed.). Barth: Leipzig. Translated as “On the Trip of a German Professor into El Dorado”. In J. Blackmore (Ed.). (1995). Ludwig Boltzmann: His Later Life and Philosophy, 1900–1906 (Vol. 168, pp. 171–197), Boston Studies in the Philosophy of Science. Kluwer: Dordrecht.Google Scholar
  10. Brouwer, L.E.J. (1905). Leven, Kunst en Mystiek. Delft: Waltman. Translated by Walter P. Van Stigt (1996). Life, art, and mysticism. In Notre Dame Journal of Formal Logic, 37(3), 389–429, with an introduction by the translator, pp. 381–387.Google Scholar
  11. Campbell, M. (2005). What tuberculosis did for modernism: The influence of a curative environment on modernist design and architecture. Medical History, 49, 463–488.CrossRefGoogle Scholar
  12. Castleman, R. (1983). Prints from blocks: From Gauguin to now. New York: Museum of Modern Art.Google Scholar
  13. Gay, P. (2008). Modernism: The lure of heresy from Baudelaire to Beckett and beyond. New York: W. W. Norton.Google Scholar
  14. Gilman, S. (1995). Franz Kafka, the Jewish patient. London: Routledge.Google Scholar
  15. Gray, J. (2008). Plato’s ghost, the modernist transformation of mathematics. Princeton: Princeton University Press.CrossRefGoogle Scholar
  16. Hoek, E. (1986). Piet Mondrian. In C. Blotkamp (Ed.), De Stijl: The formative years (pp. 39–75). Cambridge: MIT Press.Google Scholar
  17. Leonard, R. (1998). Ethics and excluded middle: Karl Menger and social science in interwar Vienna. Isis, 89, 1–26.CrossRefGoogle Scholar
  18. Leonard, R. (2010). Von Neumann, Morgenstern and the creation of game theory: From chess to social science, 1900–1960. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  19. Menger, H.A. (1943). Architecture in children’s blocks. South Bend, Indiana: Unpublished booklet.Google Scholar
  20. Menger, K. (1930), "Der Intuitionismus", Blätter für Deutsche Philosophie, Vol. 4, pp. 311 - 25. Translated by R. Kowalski as "On Intuitionism" in Menger (1979), pp. 46 58.Google Scholar
  21. Menger, K. (1933), "Die neue Logik", in Krise und Neuaufbau in den Exakten Wissenschaften. Fünf Wiener Worträge, Leipzig and Vienna: Deuticke, pp. 94 - 122. Translated by H.B. Gottlieb and J. K. Senior as "The New Logic" in Philosophy of Science 4, pp. 299 - 336. Reprinted in Menger (1979), pp. 7 - 45, with prefatory notes on "Logical Tolerance in the Vienna Circle", pp. 11 - 16.Google Scholar
  22. Menger, K. (1934). Moral, Wille und Weltgestaltung. Grundlegung zur Logik der Sitten. Vienna: Julius Springer. Translated (1974) as Morality, decision and social organization: Towards a logic of ethics. Dordrecht: Reidel.Google Scholar
  23. Menger, K. (1979). Selected papers on logic, didactics, foundations and economics. Dordrecht: Reidel.CrossRefGoogle Scholar
  24. Menger, K. (1994). Reminiscences of the Vienna circle and the mathematical colloquium. In L. Golland, B. McGuinness, & A. Sklar (Eds.), Vienna circle collection (Vol. 20). Dordrecht: Kluwer.Google Scholar
  25. Neurath, O. (1930). Gesellschaft und Wirtschaft: Bildstatisches Elementarwerk. Leipzig: Bibliographisches Institut.Google Scholar
  26. Overy, P. (1991). De Stijl. London: Thames & Hudson.Google Scholar
  27. Punzo, L. (1989). Von Neumann and K. Menger’s mathematical colloquium. In M. Dore, R. Goodwin, & S. Chakravarty (Eds.), John von Neumann and modern economics. Oxford: Clarendon Press.Google Scholar
  28. Scheall, S., & Schumacher, R. (2018). Karl Menger as son of Carl Menger. History of Political Economy, 50(4), 649–678.CrossRefGoogle Scholar
  29. Seuphor, M. (1956). Piet Mondrian, sa vie, son oeuvre. Paris: Flammarion.Google Scholar
  30. Seuphor, M. (1966). Mondrian et la pensée de Schoenmaekers. Das Werk, 53(9), 362–363.Google Scholar
  31. Sigmund, K., & Dierker, E. (Eds.). (1998). Karl Menger – Ergebnisse eines Mathematischen Kolloquiums. Vienna: Springer.Google Scholar
  32. Sigmund, K., Schweizer, B., Sklar, A., Gruber, P., Hlwaka, E., Reich, L., & Schmetterer, L. (Eds.). (2002). Karl Menger, Selecta Mathematica I and II (2 vols.). Vienna: Springer.Google Scholar
  33. Threlfall, T. (1988). Piet Mondrian: His life’s work and evolution, 1872 to 1944. New York: Garland Publishing.Google Scholar
  34. Van Dalen, D. (1999). Mystic, geometer, and intuitionist: The life of L.E.J. Brouwer, Vol. I, The dawning revolution. Oxford: Clarendon Press.Google Scholar
  35. Van Dalen, D. (2005). Mystic, geometer, and intuitionist: The life of L.E.J. Brouwer, Vol. II, Hope and Disillusion. Oxford: Clarendon Press.Google Scholar
  36. Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economics behavior. Princeton: Princeton University Press.Google Scholar
  37. Weintraub, E. R. (1985). General equilibrium analysis: Studies in appraisal. Cambridge: Cambridge University Press.Google Scholar
  38. Wiener, N. (1920). Aesthetics. In The encyclopedia Americana (pp. 189–203). New York: The Encyclopedia Americana Corporation.Google Scholar
  39. Worringer, W. (1953[1908]). Abstraction and empathy: A contribution to the psychology of style. New York: International Universities Press. Translation of Abstraktion und Einfühlung by Michael Bullock.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of EconomicsUniversité du Québec à Montréal (UQAM)MontrealCanada

Personalised recommendations