Advertisement

Assessing health-related quality of life in cancer survivors: factors impacting on EORTC QLU-C10D-derived utility values

  • Thomas van Gelder
  • Brendan Mulhern
  • Dounya Schoormans
  • Olga Husson
  • Richard De Abreu LourençoEmail author
Article

Abstract

Purpose

To investigate the factors influencing EORTC QLQ-C30-derived EORTC QLU-C10D utility values across five cancer types (non-Hodgkin lymphoma, multiple myeloma, colorectal, thyroid, and prostate cancer) and a general population sample.

Methods

Data from the Dutch population-based patient-reported outcomes following initial treatment and long-term evaluation of survivorship (PROFILES) registry collected between 2009 and 2012 were used. EORTC QLQ-C30 data were used to estimate utility values by applying the EORTC QLU-C10D instrument using Australian utility weights. Regression analyses were conducted, within and across cancer type, to examine the factors influencing utility values, including patient- and cancer-specific factors, as well as the EORTC QLQ-C30 scale/item scores.

Results

The mean utility value for the total cancer sample was 0.791 (SD 0.201), significantly lower than that from the general population (0.865, SD 0.165). Multiple myeloma patients had the lowest utility value at 0.663 (SD 0.244). Physical functioning, pain and nausea and vomiting were the health-related quality of life (HRQoL) domains with the greatest impact on utility values; cognitive functioning and dyspnea had the lowest impact. Of the demographic and clinical factors, unemployment for reasons other than retirement, age older than 75 years, number of comorbidities, and experience of symptoms all had a statistically significant negative impact on utility values.

Conclusions

This study is one of the first to apply the EORTC QLU-C10D to a heterogeneous group of cancer patients. Results can be used to more efficiently target care towards factors influencing HRQoL. Furthermore, it enhances our understanding of how the EORTC QLU-C10D performs across cancer types, supporting its use in cost–utility analyses.

Keywords

EORTC QLU-C10D Health-related quality of life Patient-reported outcomes Utility values Cancer 

Notes

Compliance with ethical standards

Conflict of interest

This research was completed as part of a Masters research program for T van Gelder who was the recipient of expense reimbursement from the University of Technology (UTS) as part of his research placement. The following author(s) are employed by UTS: R De Abreu Lourenco, B Mulhern. R De Abreu Lourenco and B Mulhern also receive funding from Cancer Australia for the provision of health economic support services via the Cancer Research Economics Support Team.

Ethical approval

Ethics approval for the conduct of this study was provided by the University of Technology Sydney Human Research Ethics Committee under the Centre for Health Economics Research and Evaluation Program Ethics (Ref No. 2015000135).

Supplementary material

11136_2020_2420_MOESM1_ESM.docx (34 kb)
Supplementary file1 (DOCX 34 kb)

References

  1. 1.
    Aaronson, N. K., Ahmedzai, S., Bergman, B., Bullinger, M., Cull, A., Duez, N. J., et al. (1993). The European organization for research and treatment of cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology. Journal of the National Cancer Institute,85(5), 365–376.CrossRefGoogle Scholar
  2. 2.
    Herdman, M., Gudex, C., Lloyd, A., Janssen, M., Kind, P., Parkin, D., et al. (2011). Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation,20(10), 1727–1736.  https://doi.org/10.1007/s11136-011-9903-x.CrossRefGoogle Scholar
  3. 3.
    Sintonen, H., & Pekurinen, M. (1990s). A fifteen-dimensional measure of health-related quality of life (15D) and its applications. In S. R. Walker & R. M. Rosser (Eds.), Quality of life assessment: Key issues in the 1990s (pp. 185–195). Dordrecht: Springer.CrossRefGoogle Scholar
  4. 4.
    Brazier, J., Deverill, M., & Green, C. (1999). A review of the use of health status measures in economic evaluation. Journal of Health Services Research & Policy,4(3), 174–184.  https://doi.org/10.1177/135581969900400310.CrossRefGoogle Scholar
  5. 5.
    Rowen, D., Young, T., Brazier, J., & Gaugris, S. (2012). Comparison of generic, condition-specific, and mapped health state utility values for multiple myeloma cancer. Value in Health: The Journal of the International Society for Pharmacoeconomics and Outcomes Research,15(8), 1059–1068.  https://doi.org/10.1016/j.jval.2012.08.2201.CrossRefGoogle Scholar
  6. 6.
    Longworth, L., Yang, Y., Young, T., Mulhern, B., Hernández Alava, M., Mukuria, C., et al. (2014). Use of generic and condition-specific measures of health-related quality of life in NICE decision-making: A systematic review, statistical modelling and survey. Health Technology Assessment (Winchester, England),18(9), 1–224.  https://doi.org/10.3310/hta18090.CrossRefGoogle Scholar
  7. 7.
    Lorgelly, P. K., Doble, B., Rowen, D., & Brazier, J. (2017). Condition-specific or generic preference-based measures in oncology? A comparison of the EORTC-8D and the EQ-5D-3L. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation,26(5), 1163–1176.  https://doi.org/10.1007/s11136-016-1443-y.CrossRefGoogle Scholar
  8. 8.
    King, M. T., Costa, D. S. J., Aaronson, N. K., Brazier, J. E., Cella, D. F., Fayers, P. M., et al. (2016). QLU-C10D: A health state classification system for a multi-attribute utility measure based on the EORTC QLQ-C30. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation,25(3), 625–636.  https://doi.org/10.1007/s11136-015-1217-y.CrossRefGoogle Scholar
  9. 9.
    Norman, R., Viney, R., Aaronson, N. K., Brazier, J. E., Cella, D., Costa, D. S. J., et al. (2016). Using a discrete choice experiment to value the QLU-C10D: feasibility and sensitivity to presentation format. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation,25(3), 637–649.  https://doi.org/10.1007/s11136-015-1115-3.CrossRefGoogle Scholar
  10. 10.
    King, M. T., Viney, R., Simon Pickard, A., Rowen, D., Aaronson, N. K., Brazier, J. E., et al. (2018). Australian utility weights for the EORTC QLU-C10D, a multi-attribute utility instrument derived from the cancer-specific quality of life questionnaire, EORTC QLQ-C30. PharmacoEconomics,36(2), 225–238.  https://doi.org/10.1007/s40273-017-0582-5.CrossRefPubMedGoogle Scholar
  11. 11.
    Young, T., Yang, Y., Brazier, J. E., Tsuchiya, A., & Coyne, K. (2009). The first stage of developing preference-based measures: Constructing a health-state classification using Rasch analysis. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation,18(2), 253–265.  https://doi.org/10.1007/s11136-008-9428-0.CrossRefGoogle Scholar
  12. 12.
    Rowen, D., Brazier, J., Young, T., Gaugris, S., Craig, B. M., King, M. T., et al. (2011). Deriving a preference-based measure for cancer using the EORTC QLQ-C30. Value in Health: The Journal of the International Society for Pharmacoeconomics and Outcomes Research,14(5), 721–731.  https://doi.org/10.1016/j.jval.2011.01.004.CrossRefGoogle Scholar
  13. 13.
    van de Poll-Franse, L. V., Horevoorts, N., van Eenbergen, M., Denollet, J., Roukema, J. A., Aaronson, N. K., et al. (2011). The patient reported outcomes following initial treatment and long term evaluation of survivorship registry: scope, rationale and design of an infrastructure for the study of physical and psychosocial outcomes in cancer survivorship cohorts. European Journal of Cancer (Oxford, England: 1990),47(14), 2188–2194.  https://doi.org/10.1016/j.ejca.2011.04.034.CrossRefGoogle Scholar
  14. 14.
    de Rooij, B. H., Ezendam, N. P. M., Mols, F., Vissers, P. A. J., Thong, M. S. Y., Vlooswijk, C. C. P., et al. (2018). Cancer survivors not participating in observational patient-reported outcome studies have a lower survival compared to participants: The population-based PROFILES registry. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation,27(12), 3313–3324.  https://doi.org/10.1007/s11136-018-1979-0.CrossRefGoogle Scholar
  15. 15.
    Mols, F., Husson, O., Oudejans, M., Vlooswijk, C., Horevoorts, N., & van de Poll-Franse, L. V. (2018). Reference data of the EORTC QLQ-C30 questionnaire: Five consecutive annual assessments of approximately 2000 representative Dutch men and women. Acta Oncologica (Stockholm, Sweden),57(10), 1381–1391.  https://doi.org/10.1080/0284186X.2018.1481293.CrossRefGoogle Scholar
  16. 16.
    Bergius, S., Torvinen, S., Muhonen, T., Roine, R. P., Sintonen, H., & Taari, K. (2017). Health-related quality of life among prostate cancer patients: Real-life situation at the beginning of treatment. Scandinavian Journal of Urology,51(1), 13–19.  https://doi.org/10.1080/21681805.2016.1247293.CrossRefPubMedGoogle Scholar
  17. 17.
    de Groot, S., Redekop, W. K., Versteegh, M. M., Sleijfer, S., Oosterwijk, E., Kiemeney, L., et al. (2018). Health-related quality of life and its determinants in patients with metastatic renal cell carcinoma. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation,27(1), 115–124.  https://doi.org/10.1007/s11136-017-1704-4.CrossRefGoogle Scholar
  18. 18.
    Färkkilä, N., Torvinen, S., Roine, R. P., Sintonen, H., Hänninen, J., Taari, K., et al. (2014). Health-related quality of life among breast, prostate, and colorectal cancer patients with end-stage disease. Quality of Life Research: An International Journal of Quality of Life Aspects of Treatment, Care and Rehabilitation,23(4), 1387–1394.  https://doi.org/10.1007/s11136-013-0562-y.CrossRefGoogle Scholar
  19. 19.
    Hagiwara, Y., Shiroiwa, T., Shimozuma, K., Kawahara, T., Uemura, Y., Watanabe, T., et al. (2018). Impact of adverse events on health utility and health-related quality of life in patients receiving first-line chemotherapy for metastatic breast cancer: Results from the SELECT BC study. PharmacoEconomics,36(2), 215–223.  https://doi.org/10.1007/s40273-017-0580-7.CrossRefPubMedGoogle Scholar
  20. 20.
    Meng, Y., McCarthy, G., Berthon, A., & Dinet, J. (2017). Patient-reported health state utilities in metastatic gastroenteropancreatic neuroendocrine tumours—An analysis based on the CLARINET study. Health and Quality of Life Outcomes,15(1), 131.  https://doi.org/10.1186/s12955-017-0711-z.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Torvinen, S., Färkkilä, N., Sintonen, H., Saarto, T., Roine, R. P., & Taari, K. (2013). Health-related quality of life in prostate cancer. Acta Oncologica (Stockholm, Sweden),52(6), 1094–1101.  https://doi.org/10.3109/0284186X.2012.760848.CrossRefGoogle Scholar
  22. 22.
    Craig, B. M., Reeve, B. B., Cella, D., Hays, R. D., Pickard, A. S., & Revicki, D. A. (2014). Demographic differences in health preferences in the United States. Medical care,52(4), 307–313.  https://doi.org/10.1097/MLR.0000000000000066.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dolan, P. (1996). The effect of experience of illness on health state valuations. Journal of Clinical Epidemiology,49(5), 551–564.CrossRefGoogle Scholar
  24. 24.
    Yeh, J. M., Hanmer, J., Ward, Z. J., Leisenring, W. M., Armstrong, G. T., Hudson, M. M., et al. (2016). Chronic conditions and utility-based health-related quality of life in adult childhood cancer survivors. Journal of the National Cancer Institute.  https://doi.org/10.1093/jnci/djw046.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Leslie, H. S., Mary, K. G., & Christian, W. (2011). TNM classification of malignant tumours (7th ed.). New York: Wiley-Blackwell.Google Scholar
  26. 26.
    Sangha, O., Stucki, G., Liang, M. H., Fossel, A. H., & Katz, J. N. (2003). The Self-Administered comorbidity questionnaire: A new method to assess comorbidity for clinical and health services research. Arthritis and Rheumatism,49(2), 156–163.  https://doi.org/10.1002/art.10993.CrossRefPubMedGoogle Scholar
  27. 27.
    Rubin, D. B. (2011). Multiple imputation for nonresponse in surveys. Hoboken: Wiley.Google Scholar
  28. 28.
    Azur, M. J., Stuart, E. A., Frangakis, C., & Leaf, P. J. (2011). Multiple imputation by chained equations: What is it and how does it work? MPR International Journal of Methods in Psychiatric Research,20(1), 40–49.CrossRefGoogle Scholar
  29. 29.
    Raghunathan, T. E., Lepkowski, J. M., Van Hoewyk, J., & Solenberger, P. (2001). A multivariate technique for multiply imputing missing values using a sequence of regression models. Survey Methodology.,27(1), 85.Google Scholar
  30. 30.
    Van Buuren, S. (2007). Multiple imputation of discrete and continuous data by fully conditional specification. Statistical Methods in Medical Research,16(3), 219.CrossRefGoogle Scholar
  31. 31.
    Johnsen, A. T., Tholstrup, D., Petersen, M. A., Pedersen, L., & Groenvold, M. (2009). Health related quality of life in a nationally representative sample of haematological patients. European Journal of Haematology,83(2), 139–148.  https://doi.org/10.1111/j.1600-0609.2009.01250.x.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Mols, F., Oerlemans, S., Vos, A. H., Koster, A., Verelst, S., Sonneveld, P., et al. (2012). Health-related quality of life and disease-specific complaints among multiple myeloma patients up to 10 year after diagnosis: Results from a population-based study using the PROFILES registry. European Journal of Haematology,89(4), 311–319.  https://doi.org/10.1111/j.1600-0609.2012.01831.x.CrossRefPubMedGoogle Scholar
  33. 33.
    Mols, F., Schoormans, D., Smit, J. W. A., Netea-Maier, R. T., Links, T. P., van der Graaf, W. T. A., et al. (2018). Age-related differences in health-related quality of life among thyroid cancer survivors compared with a normative sample: Results from the PROFILES Registry. Head & Neck,40(10), 2235–2245.  https://doi.org/10.1002/hed.25325.CrossRefGoogle Scholar
  34. 34.
    Oerlemans, S., Nijziel, M. R., & van de Poll-Franse, L. V. (2015). Age-related differences in quality of life among patients with diffuse large B-cell lymphoma. Cancer,121(16), 2857–2858.  https://doi.org/10.1002/cncr.29427.CrossRefPubMedGoogle Scholar
  35. 35.
    van der Poel, M. W. M., Oerlemans, S., Schouten, H. C., & van de Poll-Franse, L. V. (2015). Elderly multiple myeloma patients experience less deterioration in health-related quality of life than younger patients compared to a normative population: A study from the population-based PROFILES registry. Annals of Hematology,94(4), 651–661.  https://doi.org/10.1007/s00277-014-2264-0.CrossRefPubMedGoogle Scholar
  36. 36.
    Brazier, J., Ratcliffe, J., Salomon, J., & Tsuchiya, A. (2016). Measuring and valuing health benefits for economic evaluation (2nd ed.). Oxford, New York: Oxford University Press.CrossRefGoogle Scholar
  37. 37.
    McTaggart-Cowan, H., King, M. T., Norman, R., Costa, D. S. J., Pickard, A. S., Regier, D. A., et al. (2019). The EORTC QLU-C10D: The Canadian valuation study and algorithm to derive cancer-specific utilities from the EORTC QLQ-C30. MDM policy & practice,4(1), 2381468319842532–2381468319842532.  https://doi.org/10.1177/2381468319842532.CrossRefGoogle Scholar
  38. 38.
    Norman, R., Mercieca-Bebber, R., Rowen, D., Brazier, J. E., Cella, D., Pickard, A. S., et al. (2019). U.K. utility weights for the EORTC QLU-C10D. Health Economics.  https://doi.org/10.1002/hec.3950.CrossRefPubMedGoogle Scholar
  39. 39.
    Kemmler, G., Gamper, E., Nerich, V., Norman, R., Viney, R., Holzner, B., et al. (2019). German value sets for the EORTC QLU-C10D, a cancer-specific utility instrument based on the EORTC QLQ-C30. Quality of Life Research.  https://doi.org/10.1007/s11136-019-02283-w.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    van de Poll-Franse, L. V., Mols, F., Gundy, C. M., Creutzberg, C. L., Nout, R. A., Verdonck-de Leeuw, I. M., et al. (2011). Normative data for the EORTC QLQ-C30 and EORTC-sexuality items in the general Dutch population. European Journal of Cancer (Oxford, England: 1990),47(5), 667–675.  https://doi.org/10.1016/j.ejca.2010.11.004.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Utrecht UniversityUtrechtThe Netherlands
  2. 2.Centre for Health Economics Research and EvaluationUniversity of Technology SydneySydneyAustralia
  3. 3.Department of Medical and Clinical Psychology, Center of Research on Psychology in Somatic Diseases (CoRPS)Tilburg UniversityTilburgThe Netherlands
  4. 4.Department of Psychosocial Research and EpidemiologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
  5. 5.Division of Clinical StudiesInstitute of Cancer Research and Royal Marsden NHS Foundation TrustLondonUK

Personalised recommendations