Assessing measurement invariance of MSQOL-54 across Italian and English versions

  • Andrea Giordano
  • Silvia Testa
  • Marta Bassi
  • Sabina Cilia
  • Antonio Bertolotto
  • Maria Esmeralda Quartuccio
  • Erika Pietrolongo
  • Monica Falautano
  • Monica Grobberio
  • Claudia Niccolai
  • Beatrice Allegri
  • Rosa Gemma Viterbo
  • Paolo Confalonieri
  • Ambra Mara Giovannetti
  • Eleonora Cocco
  • Maria Grazia Grasso
  • Alessandra Lugaresi
  • Elisa Ferriani
  • Ugo Nocentini
  • Mauro Zaffaroni
  • Alysha De Livera
  • George Jelinek
  • Alessandra SolariEmail author
  • Rosalba Rosato



The Multiple Sclerosis Quality of Life-54 (MSQOL-54) is a specific multiple sclerosis (MS) health-related quality of life inventory consisting of 52 items organized into 12 subscales plus two single items. No study was found in literature assessing its measurement invariance across language versions. We investigated whether MSQOL-54 items provide unbiased measurements of underlying constructs across Italian and English versions.


Three constrained levels of measurement invariance were evaluated: configural invariance where equivalent numbers of factors/factor patterns were required; metric invariance where equivalent factor loadings were required; and scalar invariance where equivalent item intercepts between groups were required. Comparative fit index (CFI), root mean square error of approximation (RMSEA), and standardized root mean square residual (SRMR) fit indices and their changes between nested models were used to assess tenability of invariance constraints.


Overall, the dataset included 3669 MS patients: 1605 (44%) Italian, mean age 41 years, 62% women, 69% with mild level of disability; 2064 (56%) English-speaking (840 [41%] from North America, 797 [39%] from Australasia, 427 [20%] from UK and Ireland), mean age 46 years, 83% women, 54% with mild level of disability. The configural invariance model showed acceptable fit (RMSEA = 0.052, CFI = 0.904, SRMR = 0.046); imposing loadings and intercepts equality constraints produced negligible worsening of fit (ΔRMSEA < 0.001, ΔCFI = − 0.002, ΔSRMR = 0.002 for metric invariance; ΔRMSEA = 0.003, ΔCFI = − 0.013, ΔSRMR = 0.003 for scalar invariance).


These findings support measurement invariance of the MSQOL-54 across the two language versions, suggesting that the questionnaire has the same meaning and the same measurement paramaters in the Italian and English versions.


Multiple sclerosis Measurement invariance Multi-group confirmatory factor analysis Health-related quality of life MSQOL-54 



We thank all the PwMS who participated.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Patients gave written informed consent to being included in the original projects. Additional consent was not required for this secondary analysis, for which patients’ privacy and anonymity was guaranteed.

Supplementary material

11136_2019_2352_MOESM1_ESM.pdf (276 kb)
Supplementary material 1 (PDF 275 kb)
11136_2019_2352_MOESM2_ESM.pdf (202 kb)
Supplementary material 2 (PDF 202 kb)
11136_2019_2352_MOESM3_ESM.pdf (200 kb)
Supplementary material 3 (PDF 199 kb)


  1. 1.
    Compston, A., McDonald, I., Noseworthy, J., Lassmann, H., Miller, D., Smith, K., et al. (2006). McAlpine’s multiple sclerosis (4th ed.). Edinburgh: Churchill Livingstone Elsevier.Google Scholar
  2. 2.
    GBD 2016 Multiple Sclerosis Collaborators. (2019). Global, regional, and national burden of multiple sclerosis 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurology,18(3), 269–285.CrossRefGoogle Scholar
  3. 3.
    Miller, D. M., & Allen, R. (2010). Quality of life in multiple sclerosis: determinants, measurement, and use in clinical practice. Current Neurology and Neuroscience Reports,10, 397–406.PubMedCrossRefGoogle Scholar
  4. 4.
    Mitchell, A. J., Benito-León, J., González, J. M., & Rivera-Navarro, J. (2005). Quality of life and its assessment in multiple sclerosis: integrating physical and psychological components of wellbeing. Lancet Neurology,4, 556–566.PubMedCrossRefGoogle Scholar
  5. 5.
    Rothwell, P. M., McDowell, Z., Wong, C. K., & Dorman, P. J. (1997). Doctors and patients don’t agree: cross sectional study of patients and doctors perceptions and assessments of disability in multiple sclerosis. BMJ,314, 1580–1583.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Solari, A. (2005). Role of health-related quality of life measures in the routine care of people with multiple sclerosis. Health Quality of Life Outcomes,3, 16.PubMedCrossRefGoogle Scholar
  7. 7.
    Vickrey, B. G., Hays, R. D., Harooni, R., Myers, L. W., & Ellison, G. W. (1995). A health-related quality of life measure for multiple sclerosis. Quality Life Research,4, 187–206.CrossRefGoogle Scholar
  8. 8.
    Cella, D. F., Dineen, M. A., Arnason, B., Heeley, E., Rostgaard, I., Løvendahl, B., et al. (1996). Validation of the functional assessment of multiple sclerosis quality of life instrument. Neurology,47, 129–139.PubMedCrossRefGoogle Scholar
  9. 9.
    Solari, A., Filippini, G., Mendozzi, L., Ghezzi, A., Cifani, S., Barbieri, E., et al. (1999). Validation of Italian multiple sclerosis quality of life 54 questionnaire. Journal Neurology Neurosurgery Psychiatry,67, 158–162.CrossRefGoogle Scholar
  10. 10.
    Acquadro, C., Lafortune, L., & Mear, I. (2003). Quality of life in multiple sclerosis: translation in French Canadian of the MSQoL-54. Health Quality Life Outcomes,1, 70.CrossRefGoogle Scholar
  11. 11.
    Yamamoto, T., Ogata, K., Katagishi, M., Shimizu, H., Ogawa, M., Yamamura, T., et al. (2004). Validation of the Japanese-translated version Multiple Sclerosis Quality of Life-54 instrument. Rinsho Shinkeigaku,44, 417–421.PubMedGoogle Scholar
  12. 12.
    Idiman, E., Uzunel, F., Ozakbas, S., Yozbatiran, N., Oguz, M., Callioglu, B., et al. (2006). Cross-cultural adaptation and validation of multiple sclerosis quality of life questionnaire (MSQOL-54) in a Turkish multiple sclerosis sample. Journal Neurological Sciences,240, 77–80.CrossRefGoogle Scholar
  13. 13.
    Pekmezovic, T., Kisic Tepavcevic, D., Kostic, J., & Drulovic, J. (2007). Validation and cross-cultural adaptation of the disease-specific questionnaire MSQOL-54 in Serbian multiple sclerosis patients sample. Quality Life Research,16, 1383–1387.CrossRefGoogle Scholar
  14. 14.
    Füvesi, J., Bencsik, K., Benedek, K., Mátyás, K., Mészáros, E., Rajda, C., et al. (2008). Cross-cultural adaptation and validation of the ‘Multiple Sclerosis Quality of Life Instrument’ in Hungarian. Multiple Sclerosis,14, 391–398.PubMedCrossRefGoogle Scholar
  15. 15.
    El Alaoui Taoussi, K., Ait Ben Haddou, E., Benomar, A., Abouqal, R., & Yahyaoui, M. (2012). Quality of life and multiple sclerosis: Arabic language translation and transcultural adaptation of MSQOL-54. Revue Neurologique,168, 444–449.PubMedCrossRefGoogle Scholar
  16. 16.
    Putnick, D. L., & Bornstein, M. H. (2016). Measurement invariance conventions and reporting: the state of the art and future directions for psychological research. Developmental Review,41, 71–90.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Boer, D., Hanke, K., & He, J. (2018). On detecting systematic measurement error in cross-cultural research: a review and critical reflection on equivalence and invariance tests. Journal Cross-Cultural Psychology,49(5), 713–734.CrossRefGoogle Scholar
  18. 18.
    Motl, R. W., McAuley, E., & Suh, Y. (2010). Validity, invariance and responsiveness of a self-report measure of functional limitations and disability in multiple sclerosis. Disability Rehabilitation,32, 1260–1271.PubMedCrossRefGoogle Scholar
  19. 19.
    Motl, R. W., McAuley, E., & Mullen, S. (2011). Longitudinal measurement invariance of the multiple sclerosis walking scale-12. Journal Neurological Sciences,305, 75–79.CrossRefGoogle Scholar
  20. 20.
    Motl, R. W., Mullen, S., & McAuley, E. (2012). Multi-group measurement invariance of the multiple sclerosis walking scale-12? Neurological Research,34(2), 149–152.PubMedCrossRefGoogle Scholar
  21. 21.
    Cox, S. D., & Pakenham, K. I. (2014). Confirmatory factor analysis and invariance testing of the Young Carer of Parents Inventory (YCOPI). Rehabilitation Psychology,59, 439–452.PubMedCrossRefGoogle Scholar
  22. 22.
    Chung, H., Kim, J., Askew, R. L., Jones, S. M., Cook, K. F., & Amtmann, D. (2015). Assessing measurement invariance of three depression scales between neurologic samples and community samples. Quality Life Research,24, 1829–1834.CrossRefGoogle Scholar
  23. 23.
    Chung, H., Kim, J., Park, R., Bamer, A. M., Bocell, F. D., & Amtmann, D. (2016). Testing the measurement invariance of the University of Washington Self-Efficacy Scale short form across four diagnostic subgroups. Quality Life Research,25, 2559–2564.CrossRefGoogle Scholar
  24. 24.
    Byrne, B. M., Shavelson, R. J., & Muthén, B. (1989). Testing for the equivalence of factor covariance and mean structures: the issue of partial measurement invariance. Psychological Bulletin,105(3), 456.CrossRefGoogle Scholar
  25. 25.
    Santos, D., Abad, F. J., Miret, M., Chatterji, S., Olaya, B., Zawisza, K., et al. (2017). Measurement invariance of the WHOQOL-AGE questionnaire across three European countries. Quality of Life Research,27, 1015–1025.PubMedCrossRefGoogle Scholar
  26. 26.
    Geyh, S., Fellinghauer, B. A., Kirchberger, I., & Post, M. W. (2010). Cross-cultural validity of four quality of life scales in persons with spinal cord injury. Health Qual Life Outcomes,8, 94. Scholar
  27. 27.
    Hadgkiss, E. J., Jelinek, G. A., Weiland, T. T., Pereira, N. G., Marck, C. H., & van derMeer, D. M. (2013). Methodology of an international study of people with multiple sclerosis recruited through web 2.0 platforms: demographics, lifestyle, and disease characteristics. Neurology Research International,2013, 580–596.Google Scholar
  28. 28.
    Jelinek, G. A., De Livera, A. M., Marck, C. H., Brown, C. R., Neate, S. L., Keryn, L., et al. (2016). Lifestyle, medication and socio-demographic determinants of mental and physical health-related quality of life in people with multiple sclerosis. BMC Neurology,16, 235. Scholar
  29. 29.
    Bassi, M., Falautano, M., Cilia, S., Goretti, B., Grobberio, M., Pattini, M., et al. (2016). Illness perception and well-being among persons with multiple sclerosis and their caregivers. Journal Clinical Psychology Medical Settings,23, 33–52.CrossRefGoogle Scholar
  30. 30.
    Bassi, M., Falautano, M., Cilia, S., Goretti, B., Grobberio, M., Pattini, M., et al. (2014). The coexistence of well- and ill-being in persons with multiple sclerosis, their caregivers and health professionals. Journal Neurological Sciences,337, 67–73.CrossRefGoogle Scholar
  31. 31.
    Rosato, R., Testa, S., Bertolotto, A., Confalonieri, P., Patti, F., Lugaresi, A., et al. (2016). Development of a short version of MSQOL-54 using factor analysis and item response theory. PLoS ONE,11, e0153466.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Rosato, R., Testa, S., Bertolotto, A., Scavelli, F., Giovannetti, A. M., Confalonieri, P., et al. (2018). Prospective validation of the abbreviated, electronic version of the MSQOL-54. Multiple Sclerosis,25(6), 856–866.PubMedCrossRefGoogle Scholar
  33. 33.
    Solari, A., Motta, A., Mendozzi, L., Pucci, E., Forni, M., Mancardi, G., et al. (2004). Computer-aided retraining of memory and attention in people with multiple sclerosis: a randomized, double-blind controlled trial. Journal Neurological Sciences,222, 99–104.CrossRefGoogle Scholar
  34. 34.
    Massacesi, L., Tramacere, I., Amoroso, S., Battaglia, M. A., Benedetti, M. D., et al. (2014). Azathioprine versus beta interferons for relapsing-remitting multiple sclerosis: a multicentre randomized non-inferiority trial. PLoS ONE,9, e113371.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Polman, C., Reingold, S., Edan, G., Filippi, M., Hartung, H., Kappos, L., et al. (2005). Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Annals Neurology,58, 840–846.CrossRefGoogle Scholar
  36. 36.
    Polman, C. H., Reingold, S. C., Banwell, B., Clanet, M., Cohen, J. A., Filippi, M., et al. (2011). Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Annals Neurology,69, 292–302.CrossRefGoogle Scholar
  37. 37.
    Kurtzke, J. F. (1983). Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology,33, 1444–1452.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Hohol, M. J., Hohol, M. J., Orav, E. J., & Weiner, H. L. (1995). Disease steps in multiple sclerosis: a simple approach to evaluate disease progression. Neurology,45, 251–255.PubMedCrossRefGoogle Scholar
  39. 39.
    Ware, J. E., Snow, K. K., Kosinski, M., & Gandek, B. (1993). SF-36 health survey manual and interpretation guide. Boston, MA: The Health Institute.Google Scholar
  40. 40.
    Giordano, A., Pucci, E., Naldi, P., Mendozzi, L., Milanese, C., Tronci, F., et al. (2009). Responsiveness of patient- reported outcome measures in multiple sclerosis relapses: the REMS study. Journal Neurology Neurosurgery Psychiatry,80, 1023–1028.CrossRefGoogle Scholar
  41. 41.
    Millsap, R. E., & Yun-Tein, J. (2004). Assessing factorial invariance in ordered-categorical measures. Multivariate Behavioral Research,39(3), 479–515.CrossRefGoogle Scholar
  42. 42.
    Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Structural Equation Modeling,6, 1–55.CrossRefGoogle Scholar
  43. 43.
    Hu, L., & Bentler, P. M. (1995). Evaluating model fit. In R. H. Hoyle (Ed.), Structural equation modeling (pp. 76–99)., Concepts, issues, and applications London: Sage.Google Scholar
  44. 44.
    Chen, F. F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling,14(3), 464–504.CrossRefGoogle Scholar
  45. 45.
    Hays, R. D., Revicki, D., & Coyne, K. S. (2005). Application of structural equation modeling to health outcomes research. Evaluation Health Professions,28, 295–309.CrossRefGoogle Scholar
  46. 46.
    van Bebber, J., Flens, G., Wigman, J. T. W., de Beurs, E., Sytema, S., Wunderink, L., et al. (2018). Application of the patient-reported outcomes measurement information system (PROMIS) item parameters for anxiety and depression in the Netherlands. International Journal of Methods in Psychiatric Research,27(4), e1744. Scholar
  47. 47.
    Iacus, S. M., King, G., & Porro, G. (2009). CEM: software for coarsened exact matching. Journal Statistical Software. Scholar
  48. 48.
    Lix, L. M., Osman, B. A., Adachi, J. D., Towheed, T., Hopman, W., Davison, K. S., et al. (2012). Measurement equivalence of the SF-36 in the canadian multicentre osteoporosis study. Health Quality of Life Outcomes,10, 29.PubMedCrossRefGoogle Scholar
  49. 49.
    Muthén, L. K., Muthén, B. O. (1998-2011). Mplus user’s guide. 6th edn. Los Angeles, CA: Muthén & Muthén.Google Scholar
  50. 50.
    Sass, D. A., Schmitt, T. A., & Marsh, H. W. (2014). Evaluating model fit with ordered categorical data within a measurement invariance framework: a comparison of estimators. Structural Equation Modeling,21(2), 167–180.CrossRefGoogle Scholar
  51. 51.
    Marrie, R. A., Cutter, G., Tyry, T., Hadjimichael, O., Campagnolo, D., et al. (2005). Changes in the ascertainment of multiple sclerosis. Neurology,65, 1066–1070.PubMedCrossRefGoogle Scholar
  52. 52.
    Marrie, R.A., Cutter, G., Tyry, T., Vollmer, T., Campagnolo, D. (2006). Does multiple sclerosis-associated disability differ between races? Neurology, 66(8), 1235–1240.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Andrea Giordano
    • 1
    • 2
  • Silvia Testa
    • 2
    • 3
  • Marta Bassi
    • 4
  • Sabina Cilia
    • 5
  • Antonio Bertolotto
    • 6
  • Maria Esmeralda Quartuccio
    • 7
  • Erika Pietrolongo
    • 8
  • Monica Falautano
    • 9
  • Monica Grobberio
    • 10
  • Claudia Niccolai
    • 11
    • 12
  • Beatrice Allegri
    • 13
  • Rosa Gemma Viterbo
    • 14
  • Paolo Confalonieri
    • 15
  • Ambra Mara Giovannetti
    • 1
    • 15
  • Eleonora Cocco
    • 16
    • 17
  • Maria Grazia Grasso
    • 18
  • Alessandra Lugaresi
    • 19
    • 20
  • Elisa Ferriani
    • 21
  • Ugo Nocentini
    • 22
    • 23
  • Mauro Zaffaroni
    • 24
  • Alysha De Livera
    • 25
  • George Jelinek
    • 25
  • Alessandra Solari
    • 1
    Email author
  • Rosalba Rosato
    • 2
  1. 1.Unit of NeuroepidemiologyFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
  2. 2.Department of PsychologyUniversity of TurinTurinItaly
  3. 3.Department of Human and Social Sciences University of Aosta Valley AostaItaly
  4. 4.Department of Biomedical and Clinical Sciences L. SaccoUniversità di MilanoMilanItaly
  5. 5.Multiple Sclerosis CenterUniversity Polyclinic Hospital G. RodolicoCataniaItaly
  6. 6.Neurology & Regional Referral Multiple Sclerosis Centre (CReSM)University Hospital San Luigi GonzagaOrbassanoItaly
  7. 7.Department of NeuroscienceSan Camillo-Forlanini HospitalRomeItaly
  8. 8.Department of Neurosciences, Imaging and Clinical SciencesUniversity G. D’AnnunzioChietiItaly
  9. 9.Servizio di Psicologia e Neuropsicologia, UO di Neurologia e Riabilitazione SpecialisticaSan Raffaele HospitalMilanItaly
  10. 10.Laboratory of Clinical Neuropsychology, Psychology UnitASST LarianaComoItaly
  11. 11.IRCCS Fondazione Carlo GnocchiFlorenceItaly
  12. 12.Department of NEUROFARBA, Section of NeurosciencesUniversity of FlorenceFlorenceItaly
  13. 13.Multiple Sclerosis CenterNeurology Unit, Hospital of VaioFidenzaItaly
  14. 14.Department of Basic Medical Sciences, Neurosciences and Sense OrgansUniversity of BariBariItaly
  15. 15.Unit of Neuroimmunology and Neuromuscular DiseasesFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
  16. 16.Department of Medical Science and Public HealthUniversity of CagliariCagliariItaly
  17. 17.Multiple Sclerosis CenterASSL Cagliari, ATS SardegnaCagliariItaly
  18. 18.Multiple Sclerosis UnitIRCCS S. Lucia FoundationRomeItaly
  19. 19.UOSI Riabilitazione Sclerosi MultiplaIRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
  20. 20.Dipartimento di Scienze Biomediche e NeuromotorieUniversità di BolognaBolognaItaly
  21. 21.UOC Psicologia OspedalieraAUSL di BolognaBolognaItaly
  22. 22.Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly
  23. 23.Neurology and Neurorehabilitation UnitIRCCS S. Lucia FoundationRomeItaly
  24. 24.Multiple Sclerosis CentreASST Valle OlonaGallarateItaly
  25. 25.Neuroepidemiology Unit, Melbourne School of Population and Global Health, Centre for Epidemiology and BiostatisticsThe University of MelbourneMelbourneAustralia

Personalised recommendations