Advertisement

Quality of Life Research

, Volume 28, Issue 5, pp 1217–1229 | Cite as

Determining a transitional scoring link between PROMIS® pediatric and adult physical health measures

  • David S. TulskyEmail author
  • Pamela A. Kisala
  • Aaron J. Boulton
  • Alan M. Jette
  • David Thissen
  • Pengsheng Ni
  • Darren A. DeWalt
  • I-Chan Huang
  • Yang Liu
  • M. J. Mulcahey
  • Mary Slavin
  • Brooke Magnus
  • Holly Crump
  • Robin Hanks
  • Susan Charlifue
  • Bryce B. Reeve
Article

Abstract

Purpose

Having independent versions of the PROMIS® scales (for Pediatric and Adults) is problematic as scores cannot be evaluated longitudinally as individuals move from childhood into adulthood. The primary aim of this research project is to use item response theory (IRT) to develop a transitional scoring link (or “crosswalk”) between the PROMIS adult and pediatric physical health measures.

Setting

Sample 1 was collected at 6 rehabilitation hospitals in the U.S., and participants in Sample 2 were recruited from public health insurance programs and an online research panel.

Methods

PROMIS pediatric and adult physical function, mobility, upper extremity, fatigue, and pain measures were administered to a sample of 874 individuals aged 14–20 years old with special health needs and a sample of 641 individuals aged 14–25 years with a disability. IRT-based scores were linked using a linear approximation to calibrated projection.

Results

Estimated latent variable correlations ranged between 0.84 and 0.95 for the PROMIS pediatric and adult scores. Root Expected Mean Square Difference values were below the 0.08 threshold in all cases except when comparing genders on the Mobility (0.097) and Pain (0.10) scales in the special health care needs sample. Sum score conversion tables for the pediatric and adult PROMIS measures are presented.

Conclusions

The linking coefficients can be used to calculate scale scores on PROMIS adult measures from pediatric measure scores and vice versa. This may lead to more accurate measurement in cross-sectional studies spanning multiple age groups or longitudinal studies that require comparable measurement across distinct developmental stages.

Keywords

Patient-reported outcome measures Psychometrics Mobility limitation Pain Fatigue Test equating Test linking 

Abbreviations

CHIP

Children’s Health Insurance Program

CP

Cerebral palsy

EAP

Expected a Posteriori

HRQOL

Health-related quality of life

IRB

Institutional Review Board

IRT

Item response theory

LACP

Linear approximation to calibrated projection

OP4G

Opinions for good

PRO

Patient-Reported Outcomes

PROMIS

Patient-Reported Outcomes Measurement Information System®

REMSD

Root Expected Mean Square Difference

SCI

Spinal cord injury

SF

Short form

SHCN

Special health care needs

SMD

Standardized mean difference

TBI

Traumatic brain injury

Notes

Acknowledgements

PROMIS was funded with cooperative agreements from the National Institutes of Health (NIH) Common Fund Initiative Northwestern University, PI: David Cella, PhD, U54AR057951, U01AR052177; Northwestern University, PI: Richard C. Gershon, PhD, U54AR057943; American Institutes for Research, PI: Susan (San) D. Keller, PhD, U54AR057926; State University of New York, Stony Brook, PIs: Joan E. Broderick, PhD and Arthur A. Stone, PhD, U01AR057948, U01AR052170; University of Washington, Seattle, PIs: Heidi M. Crane, MD, MPH, Paul K. Crane, MD, MPH, and Donald L. Patrick, PhD, U01AR057954; University of Washington, Seattle, PI: Dagmar Amtmann, PhD, U01AR052171; University of North Carolina, Chapel Hill, PI: Harry A. Guess, MD, PhD (deceased), Darren A. DeWalt, MD, MPH, Bryce B. Reeve, PhD, U01AR052181; Children’s Hospital of Philadelphia, PI: Christopher B. Forrest, MD, PhD, U01AR057956; Stanford University, PI: James F. Fries, MD, U01AR052158; Boston University, PIs: Alan Jette, PT, PhD, Stephen M. Haley, PhD (deceased), and David Scott Tulsky, PhD (University of Michigan, Ann Arbor), U01AR057929; University of California, Los Angeles, PIs: Dinesh Khanna, MD (University of Michigan, Ann Arbor) and Brennan Spiegel, MD, MSHS, U01AR057936; University of Pittsburgh, PI: Paul A. Pilkonis, PhD, U01AR052155; Georgetown University, PIs: Carol. M. Moinpour, PhD (Fred Hutchinson Cancer Research Center, Seattle) and Arnold L. Potosky, PhD, U01AR057971; Children’s Hospital Medical Center, Cincinnati, PI: Esi M. Morgan DeWitt, MD, MSCE, U01AR057940; University of Maryland, Baltimore, PI: Lisa M. Shulman, MD, U01AR057967; and Duke University, PI: Kevin P. Weinfurt, PhD, U01AR052186). NIH Science Officers on this project have included Deborah Ader, PhD, Vanessa Ameen, MD (deceased), Susan Czajkowski, PhD, Basil Eldadah, MD, PhD, Lawrence Fine, MD, Dr PH, Lawrence Fox, MD, PhD, Lynne Haverkos, MD, MPH, Thomas Hilton, PhD, Laura Lee Johnson, PhD, Michael Kozak, PhD, Peter Lyster, PhD, Donald Mattison, MD, Claudia Moy, PhD, Louis Quatrano, PhD, Bryce B. Reeve, PhD, William Riley, PhD, Peter Scheidt, MD, Ashley Wilder Smith, PhD, MPH, Susana Serrate-Sztein, MD, William Phillip Tonkins, Dr PH, Ellen Werner, PhD, Tisha Wiley, PhD, and James Witter, MD, PhD. The contents of this article uses data developed under PROMIS. These contents do not necessarily represent an endorsement by the US Federal Government or PROMIS. See http://www.healthmeasures.net/explore-measurement-systems/promis for additional information on the PROMIS initiative.

Funding

This study was funded by the National Institutes of Health (U01AR057929 and U01AR052181).

Compliance with ethical standards

Conflict of interest

David Tulsky, Alan Jette, Bryce Reeve, and Darren DeWalt received a research grant from the National Institutes of Health. All other authors declare no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. 1.
    Donkervoort, M., Wiegerink, D. J., van Meeteren, J., Stam, H. J., Roebroeck, M. E., & Transition Research Group South West, N (2009). Transition to adulthood: validation of the Rotterdam Transition Profile for young adults with cerebral palsy and normal intelligence. Developmental Medicine & Child Neurology, 51(1), 53–62.CrossRefGoogle Scholar
  2. 2.
    Stevens, S. E., Steele, C. A., Jutai, J. W., Kalnins, I. V., Bortolussi, J. A., & Biggar, W. D. (1996). Adolescents with physical disabilities: some psychosocial aspects of health. Journal of Adolescent Health, 19(2), 157–164.CrossRefGoogle Scholar
  3. 3.
    Ansell, B. M., & Chamberlain, M. A. (1998). Children with chronic arthritis: the management of transition to adulthood. Baillieres Clinical Rheumatology, 12(2), 363–373.CrossRefGoogle Scholar
  4. 4.
    Magill-Evans, J., Wiart, L., Darrah, J., & Kratochvil, M. (2005). Beginning the transition to adulthood: the experiences of six families with youths with cerebral palsy. Physical & Occupational Therapy, 25(3), 19–36.Google Scholar
  5. 5.
    Matza, L. S., Swensen, A. R., Flood, E. M., Secnik, K., & Leidy, N. K. (2004). Assessment of health-related quality of life in children: a review of conceptual, methodological, and regulatory issues. Value Health, 7(1), 79–92.CrossRefGoogle Scholar
  6. 6.
    Varni, J. W., Seid, M., & Kurtin, P. S. (2001). PedsQL 4.0: reliability and validity of the Pediatric Quality of Life Inventory version 4.0 generic core scales in healthy and patient populations. Medical Care, 39(8), 800–812.CrossRefGoogle Scholar
  7. 7.
    Varni, J. W., Burwinkle, T. M., Seid, M., & Skarr, D. (2003). The PedsQL 4.0 as a pediatric population health measure: feasibility, reliability, and validity. Ambulatory Pediatrics, 3(6), 329–341.CrossRefGoogle Scholar
  8. 8.
    Cella, D., Yount, S., Rothrock, N., Gershon, R., Cook, K., Reeve, B., Ader, D., Fries, J. F., Bruce, B., Rose, M., & Group, P. C. (2007). The Patient-Reported Outcomes Measurement Information System (PROMIS): progress of an NIH Roadmap cooperative group during its first two years. Medical Care, 45(5 Suppl 1), S3–S11.CrossRefGoogle Scholar
  9. 9.
    Ader, D. N. (2007). Developing the Patient-Reported Outcomes Measurement Information System (PROMIS). Medical Care, 45(5 Suppl 1), S1–S2.CrossRefGoogle Scholar
  10. 10.
    Irwin, D. E., Stucky, B. D., Thissen, D., Dewitt, E. M., Lai, J. S., Yeatts, K., Varni, J. W., & DeWalt, D. A. (2010). Sampling plan and patient characteristics of the PROMIS pediatrics large-scale survey. Quality of Life Research, 19(4), 585–594.CrossRefGoogle Scholar
  11. 11.
    Cella, D., Riley, W., Stone, A., Rothrock, N., Reeve, B., Yount, S., Amtmann, D., Bode, R., Buysse, D., Choi, S., Cook, K., Devellis, R., DeWalt, D., Fries, J. F., Gershon, R., Hahn, E. A., Lai, J. S., Pilkonis, P., Revicki, D., Rose, M., Weinfurt, K., & Hays, R. (2010). The Patient-Reported Outcomes Measurement Information System (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005–2008. Journal of Clinical Epidemiology, 63(11), 1179–1194.CrossRefGoogle Scholar
  12. 12.
    Reeve, B. B., Thissen, D., DeWalt, D. A., Huang, I. C., Liu, Y., Magnus, B., Quinn, H., Gross, H. E., Kisala, P. A., Ni, P., Haley, S., Mulcahey, M. J., Charlifue, S., Hanks, R. A., Slavin, M., Jette, A., & Tulsky, D. S. (2016). Linkage between the PROMIS(R) pediatric and adult emotional distress measures. Quality of Life Research, 25(4), 823–833.CrossRefGoogle Scholar
  13. 13.
    Gershon, R., Rothrock, N. E., Hanrahan, R. T., Jansky, L. J., Harniss, M., & Riley, W. (2010). The development of a clinical outcomes survey research application: Assessment Center. Quality of Life Research, 19(5), 677–685.CrossRefGoogle Scholar
  14. 14.
    McPherson, M., Arango, P., Fox, H., Lauver, C., McManus, M., Newacheck, P. W., Perrin, J. M., Shonkoff, J. P., & Strickland, B. (1998). A new definition of children with special health care needs. Pediatrics, 102(1 Pt 1), 137–140.CrossRefGoogle Scholar
  15. 15.
    Neff, J. M., Sharp, V. L., Muldoon, J., Graham, J., Popalisky, J., & Gay, J. C. (2002). Identifying and classifying children with chronic conditions using administrative data with the clinical risk group classification system. Ambulatory Pediatrics, 2(1), 71–79.CrossRefGoogle Scholar
  16. 16.
    Bethell, C. D., Read, D., Stein, R. E., Blumberg, S. J., Wells, N., & Newacheck, P. W. (2002). Identifying children with special health care needs: development and evaluation of a short screening instrument. Ambulatory Pediatrics, 2(1), 38–48.CrossRefGoogle Scholar
  17. 17.
    Dorans, N. J. (2004). Equating, concordance, and expectation. Applied Psychological Measurement, 28, 227–246.CrossRefGoogle Scholar
  18. 18.
    Choi, S. W., Schalet, B., Cook, K. F., & Cella, D. (2014). Establishing a common metric for depressive symptoms: Linking the BDI-II, CES-D, and PHQ-9 to PROMIS Depression. Psychological Assessment, 26(2), 513.CrossRefGoogle Scholar
  19. 19.
    Dorans, N. J., & Holland, P. W. (2000). Population invariance and the equatability of tests: Basic theory and the linear case. Journal of Educational Measurement, 37(4), 281–306.CrossRefGoogle Scholar
  20. 20.
    Cai, L., Thissen, D., & duToit, S. H. C. (2011). IRTPRO for windows. Lincolnwood: Scientific Software International.Google Scholar
  21. 21.
    Thissen, D., Varni, J. W., Stucky, B. D., Liu, Y., Irwin, D. E., & Dewalt, D. A. (2011). Using the PedsQL 3.0 asthma module to obtain scores comparable with those of the PROMIS pediatric asthma impact scale (PAIS). Quality Life Research, 20(9), 1497–1505.CrossRefGoogle Scholar
  22. 22.
    Thissen, D., Liu, Y., Magnus, B., & Quinn, H. (2015). Extending the use of multidimensional IRT calibration as projection: many-to-one linking and linear computation of projected scores. In L. A. van der Ark, D. M. Bolt, W.-C. Wang, J. A. Doublas & S.-M. Chow (Eds.), Quantitative Psychology Research: The 79th annual meeting of the psychometric society, Madison, Wisconsin, 2014 (pp. 1–16). New York: Springer.Google Scholar
  23. 23.
    Center, N. S., & C. I., S. (2015). Spinal Cord Injury (SCI) Facts and Figures at a Glance. Birmingham: Spain Rehabilitation, University of Alabama.Google Scholar
  24. 24.
    Centers for Disease Control and Prevention. (1999). TBI in the United States: A Report to Congress. Atlanta: CDC.Google Scholar
  25. 25.
    Hays, R. D., Spritzer, K. L., Amtmann, D., Lai, J. S., Dewitt, E. M., Rothrock, N., Dewalt, D. A., Riley, W. T., Fries, J. F., & Krishnan, E. (2013). Upper-extremity and mobility subdomains from the Patient-reported outcomes measurement information system (PROMIS) adult physical functioning item bank. Archives of Physical Medicine and Rehabilitation, 94(11), 2291–2296.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • David S. Tulsky
    • 1
    • 2
    Email author
  • Pamela A. Kisala
    • 1
  • Aaron J. Boulton
    • 1
  • Alan M. Jette
    • 3
  • David Thissen
    • 4
  • Pengsheng Ni
    • 5
  • Darren A. DeWalt
    • 4
  • I-Chan Huang
    • 6
    • 7
  • Yang Liu
    • 8
  • M. J. Mulcahey
    • 9
  • Mary Slavin
    • 5
  • Brooke Magnus
    • 10
  • Holly Crump
    • 4
  • Robin Hanks
    • 11
  • Susan Charlifue
    • 12
  • Bryce B. Reeve
    • 13
  1. 1.Center for Health Assessment Research and TranslationUniversity of DelawareNewarkUSA
  2. 2.Departments of Physical Therapy and Psychological and Brain SciencesUniversity of DelawareNewarkUSA
  3. 3.MGH Institute of Health ProfessionsBostonUSA
  4. 4.University of North Carolina at Chapel HillChapel HillUSA
  5. 5.Boston University School of Public HealthBostonUSA
  6. 6.Department of Health Outcomes and Policy, College of MedicineUniversity of FloridaGainesvilleUSA
  7. 7.Department of Epidemiology and Cancer ControlSt. Jude Children’s Research HospitalMemphisUSA
  8. 8.University of MarylandCollege ParkUSA
  9. 9.Department of Occupational Therapy, School of Health ProfessionsThomas Jefferson UniversityPhiladelphiaUSA
  10. 10.Marquette UniversityMilwaukeeUSA
  11. 11.Rehabilitation Institute of MichiganDetroitUSA
  12. 12.Craig HospitalEnglewoodUSA
  13. 13.Duke UniversityDurhamUSA

Personalised recommendations