Advertisement

Quality of Life Research

, Volume 28, Issue 3, pp 815–827 | Cite as

Validation of the Patient-Reported Outcomes Measurement Information System (PROMIS)-57 and -29 item short forms among kidney transplant recipients

  • Evan Tang
  • Oladapo Ekundayo
  • John Devin Peipert
  • Nathaniel Edwards
  • Aarushi Bansal
  • Candice Richardson
  • Susan J. Bartlett
  • Doris Howell
  • Madeline Li
  • David Cella
  • Marta Novak
  • Istvan MucsiEmail author
Article

Abstract

Objective

The Patient-Reported Outcomes Measurement Information System (PROMIS) aims to address the lack of generalizable and universal measure of patient-reported outcomes to assess health-related quality of life. It has not been validated for patients with chronic kidney disease. We aim to validate the PROMIS-57 and PROMIS-29 questionnaires among kidney transplant recipients.

Methods

A cross-sectional sample of stable kidney transplant recipients was recruited. Each participant completed PROMIS-57, a 57-question instrument covering seven domains—physical function, anxiety, depression, fatigue, pain, sleep disturbance, and social functioning—alongside validated legacy questionnaires [Patient Health Questionnaire (PHQ9), General Anxiety Disorder (GAD7), Edmonton Symptom Assessment Scale revised (ESASr), and Kidney Disease Quality of Life (KDQoL-36)]. PROMIS-29, a 29-question instrument, is nested within PROMIS-57 and measures the same domains. Structural validity of PROMIS was assessed with confirmatory factor analysis, reported using the Comparative Fit Index (CFI). Construct validity was assessed with known-groups comparisons. Internal consistency was evaluated with Cronbach’s α and convergent validity was assessed with Spearman’s Rho. Test–retest reliability was assessed through the intraclass correlation coefficient (ICC).

Results

Mean (± SD) age of the 177 participants was 50 (± 17), 57% were male and 55% Caucasian. Internal consistency of each domain was high (Cronbach’s α > 0.88). Confirmatory factor analysis showed good structural validity for most domains (CFI > 0.95, RMSEA < 0.05). Test–retest reliability indicated good agreement (ICC > 0.6). Known-groups comparisons by clinical and socio-demographic differences were found as hypothesized.

Conclusions

Our results provide evidence that PROMIS-57 and PROMIS-29 are highly reliable and valid instruments among kidney transplant recipients. We propose it as a valuable tool to assess important domains of the illness experience.

Keywords

PROMIS PROMIS-57 PROMIS-29 Kidney transplant Renal transplant Patient-reported outcomes Validation study 

Notes

Compliance with ethical standards

Conflict of interest

The author(s) have no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical approval

Ethical approval for this study was obtained from the University Health Network (REB# 15-9645). All study procedures were conducted in accordance with the standards of the University Health Network research ethics board and with the 1964 Helsinki declaration and its later amendments.

Informed consent

All participants signed a written informed consent form.

References

  1. 1.
    Wild, S., Roglic, G., Green, A., Sicree, R., & King, H. (2004). Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care, 27(5), 1047–1053.  https://doi.org/10.2337/diacare.27.5.1047.PubMedCrossRefGoogle Scholar
  2. 2.
    Mills, K. T., Bundy, J. D., Kelly, T. N., Reed, J. E., Kearney, P. M., Reynolds, K., et al. (2016). Global disparities of hypertension prevalence and control: A systematic analysis of population-based studies from 90 countries. Circulation, 134(6), 441–450.  https://doi.org/10.1161/circulationaha.115.018912.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., et al. (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. The Lancet, 380(9859), 2095–2128.  https://doi.org/10.1016/s0140-6736(12)61728-0.CrossRefGoogle Scholar
  4. 4.
    Levey, A. S., Atkins, R., Coresh, J., Cohen, E. P., Collins, A. J., Eckardt, K. U., et al. (2007). Chronic kidney disease as a global public health problem: Approaches and initiatives—a position statement from Kidney Disease Improving Global Outcomes. Kidney International, 72(3), 247–259.  https://doi.org/10.1038/sj.ki.5002343.PubMedCrossRefGoogle Scholar
  5. 5.
    Akbari, A., Clase, C. M., Acott, P., Battistella, M., Bello, A., Feltmate, P., et al. (2015). Canadian Society of Nephrology commentary on the KDIGO clinical practice guideline for CKD evaluation and management. American Journal of Kidney Diseases, 65(2), 177–205.  https://doi.org/10.1053/j.ajkd.2014.10.013.PubMedCrossRefGoogle Scholar
  6. 6.
    Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group KDIGO 2012. (2013). Clinical practice guideline for the evaluation and management of chronic kidney disease. Official Journal of the International Society of Nephrology: Kidney International Supplements, 3, 1–150.Google Scholar
  7. 7.
    Cetingok, M., Hathaway, D. K., & Winsett, R. R. (2005). Differences in quality of life before transplantation among transplant recipients with respect to selected socioeconomic variables. Progress in Transplantation, 15(4), 338–344.PubMedCrossRefGoogle Scholar
  8. 8.
    Franke, G. H., Reimer, J., Kohnle, M., Luetkes, P., Maehner, N., & Heemann, U. (1999). Quality of life in end-stage renal disease patients after successful kidney transplantation: Development of the ESRD symptom checklist—transplantation module. Nephron, 83(1), 31–39.  https://doi.org/10.1159/000045470.PubMedCrossRefGoogle Scholar
  9. 9.
    Molnar-Varga, M., Molnar, M. Z., Szeifert, L., Kovacs, A. Z., Kelemen, A., Becze, A., et al. (2011). Health-related quality of life and clinical outcomes in kidney transplant recipients. American Journal of Kidney Diseases, 58(3), 444–452.  https://doi.org/10.1053/j.ajkd.2011.03.028.PubMedCrossRefGoogle Scholar
  10. 10.
    Muehrer, R. J., & Becker, B. N. (2005). Psychosocial factors in patients with chronic kidney disease: Life After Transplantation: New Transitions in Quality of Life and Psychological Distress. Seminars in Dialysis, 18(2), 124–131.  https://doi.org/10.1111/j.1525-139X.2005.18214.x.PubMedCrossRefGoogle Scholar
  11. 11.
    Barnieh, L., Yilmaz, S., McLaughlin, K., Hemmelgarn, B. R., Klarenbach, S., Manns, B. J., et al. (2014). The cost of kidney transplant over time. Progress in Transplantation, 24(3), 257–262.  https://doi.org/10.7182/pit2014710.PubMedCrossRefGoogle Scholar
  12. 12.
    Klarenbach, S. W., Tonelli, M., Chui, B., & Manns, B. J. (2014). Economic evaluation of dialysis therapies. Nature Reviews Nephrology, 10(11), 644–652.  https://doi.org/10.1038/nrneph.2014.145.PubMedCrossRefGoogle Scholar
  13. 13.
    Wang, V., Vilme, H., Maciejewski, M. L., & Boulware, L. E. (2016). The economic burden of chronic kidney disease and end-stage renal disease. Seminars in Nephrology, 36(4), 319–330.  https://doi.org/10.1016/j.semnephrol.2016.05.008.PubMedCrossRefGoogle Scholar
  14. 14.
    Overbeck, I., Bartels, M., Decker, O., Harms, J., Hauss, J., & Fangmann, J. (2005). Changes in quality of life after renal transplantation. Transplantation Proceedings, 37(3), 1618–1621.  https://doi.org/10.1016/j.transproceed.2004.09.019.PubMedCrossRefGoogle Scholar
  15. 15.
    Weldring, T., & Smith, S. M. S. (2013). Patient-reported outcomes (PROS) and patient-reported outcome measures (PROMs). Health Services Insights, 6, 61–68.  https://doi.org/10.4137/HSI.S11093.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Deshpande, P. R., Rajan, S., Sudeepthi, B. L., & Abdul Nazir, C. P. (2011). Patient-reported outcomes: A new era in clinical research. Perspectives in Clinical Research, 2(4), 137–144.  https://doi.org/10.4103/2229-3485.86879.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Hvitfeldt, H., Carli, C., Nelson, E. C., Mortenson, D. M., Ruppert, B. A., & Lindblad, S. (2009). Feed forward systems for patient participation and provider support: Adoption results from the original US context to Sweden and beyond. Quality Management in Health Care, 18(4), 247–256.  https://doi.org/10.1097/QMH.0b013e3181bee32e.PubMedCrossRefGoogle Scholar
  18. 18.
    Tang, E., Bansal, A., Novak, M., & Mucsi, I. (2018). Patient-reported outcomes in patients with chronic kidney disease and kidney transplant—part 1. (Review). Frontiers in Medicine.  https://doi.org/10.3389/fmed.2017.00254.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Wysham, N. G., Wolf, S. P., Samsa, G., Abernethy, A. P., & LeBlanc, T. W. (2017). Integration of electronic patient-reported outcomes into routine cancer care: An analysis of factors affecting data completeness. JCO Clinical Cancer Informatics.  https://doi.org/10.1200/CCI.16.00043.PubMedCrossRefGoogle Scholar
  20. 20.
    Basch, E., Bennett, A., & Pietanza, M. C. (2011). Use of patient-reported outcomes to improve the predictive accuracy of clinician-reported adverse events. JNCI: Journal of the National Cancer Institute, 103(24), 1808–1810.  https://doi.org/10.1093/jnci/djr493.PubMedCrossRefGoogle Scholar
  21. 21.
    Matsen, F. A., Russ, S. M., Vu, P. T., Hsu, J. E., Lucas, R. M., & Comstock, B. A. (2016). What factors are predictive of patient-reported outcomes? A prospective study of 337 shoulder arthroplasties. Clinical Orthopaedics and Related Research, 474(11), 2496–2510.  https://doi.org/10.1007/s11999-016-4990-1.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Basch, E., Deal, A. M., Dueck, A. C., et al. (2017). Overall survival results of a trial assessing patient-reported outcomes for symptom monitoring during routine cancer treatment. JAMA, 318(2), 197–198.  https://doi.org/10.1001/jama.2017.7156.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Cella, D., Yount, S., Rothrock, N., Gershon, R., Cook, K., Reeve, B., et al. (2007). The Patient-Reported Outcomes Measurement Information System (PROMIS): Progress of an NIH roadmap cooperative group during its first two years. Medical Care, 45(5 Suppl 1), S3–Ss11.  https://doi.org/10.1097/01.mlr.0000258615.42478.55.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Cella, D., Riley, W., Stone, A., Rothrock, N., Reeve, B., Yount, S., et al. (2010). The Patient-Reported Outcomes Measurement Information System (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005–2008. Journal of Clinical Epidemiology, 63(11), 1179–1194.  https://doi.org/10.1016/j.jclinepi.2010.04.011.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Riley, W. T., Rothrock, N., Bruce, B., Christodolou, C., Cook, K., Hahn, E. A., et al. (2010). Patient-Reported Outcomes Measurement Information System (PROMIS) domain names and definitions revisions: Further evaluation of content validity in IRT-derived item banks. Quality of Life Research, 19(9), 1311–1321.  https://doi.org/10.1007/s11136-010-9694-5.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Alphen, A., Halfens, R., Hasman, A., & Imbos, T. (1994). Likert or Rasch? Nothing is more applicable than good theory. Journal of Advanced Nursing, 20(1), 196–201.  https://doi.org/10.1046/j.1365-2648.1994.20010196.x.PubMedCrossRefGoogle Scholar
  27. 27.
    Thomas, M. L. (2011). The value of item response theory in clinical assessment: A review. Assessment, 18(3), 291–307.  https://doi.org/10.1177/1073191110374797.PubMedCrossRefGoogle Scholar
  28. 28.
    Reeve, B. B., Hays, R. D., Bjorner, J. B., Cook, K. F., Crane, P. K., Teresi, J. A., et al. (2007). Psychometric evaluation and calibration of health-related quality of life item banks: Plans for the Patient-Reported Outcomes Measurement Information System (PROMIS). Medical Care, 45(5 Suppl 1), S22–S31.  https://doi.org/10.1097/01.mlr.0000250483.85507.04.PubMedCrossRefGoogle Scholar
  29. 29.
    Carle, A. C., Cella, D., Cai, L., Choi, S. W., Crane, P. K., Curtis, S. M., et al. (2011). Advancing PROMIS’s methodology: Results of the third Patient-Reported Outcomes Measurement Information System (PROMIS((R))) psychometric summit. Expert Review of Pharmacoeconomics & Outcomes Research, 11(6), 677–684.  https://doi.org/10.1586/erp.11.74.CrossRefGoogle Scholar
  30. 30.
    Gershon, R. C., Rothrock, N., Hanrahan, R., Bass, M., & Cella, D. (2010). The use of PROMIS and assessment center to deliver patient-reported outcome measures in clinical research. Journal of Applied Measurement, 11(3), 304–314.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Jensen, R. E., Potosky, A. L., Reeve, B. B., Hahn, E., Cella, D., Fries, J., et al. (2015). Validation of the PROMIS physical function measures in a diverse US population-based cohort of cancer patients. Quality of Life Research, 24(10), 2333–2344.  https://doi.org/10.1007/s11136-015-0992-9.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Buysse, D. J., Yu, L., Moul, D. E., Germain, A., Stover, A., Dodds, N. E., et al. (2010). Development and validation of patient-reported outcome measures for sleep disturbance and sleep-related impairments. Sleep, 33(6), 781–792.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Schalet, B. D., Pilkonis, P. A., Yu, L., Dodds, N., Johnston, K. L., Yount, S., et al. (2016). Clinical validity of PROMIS(®) depression, anxiety, and anger across diverse clinical samples. Journal of Clinical Epidemiology, 73, 119–127.  https://doi.org/10.1016/j.jclinepi.2015.08.036.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Pilkonis, P. A., Choi, S. W., Reise, S. P., Stover, A. M., Riley, W. T., & Cella, D. (2011). Item banks for measuring emotional distress from the Patient-Reported Outcomes Measurement Information System (PROMIS(R)): Depression, anxiety, and anger. Assessment, 18(3), 263–283.  https://doi.org/10.1177/1073191111411667.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Cella, D., Lai, J.-S., Jensen, S. E., Christodoulou, C., Junghaenel, D. U., Reeve, B. B., et al. (2016). Clinical validity of the PROMIS(®) fatigue item bank across diverse clinical samples. Journal of Clinical Epidemiology, 73, 128–134.  https://doi.org/10.1016/j.jclinepi.2015.08.037.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Askew, R. L., Cook, K. F., Revicki, D. A., Cella, D., & Amtmann, D. (2016). Evidence from diverse clinical populations supported clinical validity of PROMIS pain interference and pain behavior. Journal of Clinical Epidemiology. 73, 103–111.  https://doi.org/10.1016/j.jclinepi.2015.08.035.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Hahn, E. A., DeVellis, R. F., Bode, R. K., Garcia, S. F., Castel, L. D., Eisen, S. V., et al. (2010). Measuring social health in the Patient-Reported Outcomes Measurement Information System (PROMIS): Item bank development and testing. Quality of Life Research, 19(7), 1035–1044.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Fries, J. F., Witter, J., Rose, M., Cella, D., Khanna, D., & Morgan-DeWitt, E. (2014). Item response theory, computerized adaptive testing, and PROMIS: Assessment of physical function. Journal of Rheumatology, 41(1), 153–158.  https://doi.org/10.3899/jrheum.130813.PubMedCrossRefGoogle Scholar
  39. 39.
    Revicki, D. A., Chen, W. H., Harnam, N., Cook, K. F., Amtmann, D., Callahan, L. F., et al. (2009). Development and psychometric analysis of the PROMIS pain behavior item bank. Pain, 146(1–2), 158–169.  https://doi.org/10.1016/j.pain.2009.07.029.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Magasi, S., Ryan, G., Revicki, D., Lenderking, W., Hays, R. D., Brod, M., et al. (2012). Content validity of patient-reported outcome measures: Perspectives from a PROMIS meeting. Quality of Life Research, 21(5), 739–746.  https://doi.org/10.1007/s11136-011-9990-8.PubMedCrossRefGoogle Scholar
  41. 41.
    Liu, H., Cella, D., Gershon, R., Shen, J., Morales, L. S., Riley, W., et al. (2010). Representativeness of the PROMIS internet panel. Journal of Clinical Epidemiology, 63(11), 1169–1178.  https://doi.org/10.1016/j.jclinepi.2009.11.021.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Barotfi, S., Molnar, M. Z., Almasi, C., Kovacs, A. Z., Remport, A., Szeifert, L., et al. (2006). Validation of the kidney disease quality of life-short form questionnaire in kidney transplant patients. Journal of Psychosomatic Research, 60(5), 495–504.  https://doi.org/10.1016/j.jpsychores.2005.09.009.PubMedCrossRefGoogle Scholar
  43. 43.
    Fiebiger, W., Mitterbauer, C., & Oberbauer, R. (2004). Health-related quality of life outcomes after kidney transplantation. Health and Quality of Life Outcomes, 2, 2–2.  https://doi.org/10.1186/1477-7525-2-2.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ricardo, A. C., Hacker, E., Lora, C. M., Ackerson, L., DeSalvo, K. B., Go, A., et al. (2013). Validation of the kidney disease quality of life short form 36 (KDQOL-36™) US Spanish and English versions in a cohort of hispanics with chronic kidney disease. Ethnicity and Disease, 23(2), 202–209.PubMedGoogle Scholar
  45. 45.
    Hays, R. D., Kallich, J. D., Mapes, D. L., Coons, S. J., & Carter, W. B. (1994). Development of the kidney disease quality of life (KDQOL) instrument. Quality of Life Research, 3(5), 329–338.PubMedCrossRefGoogle Scholar
  46. 46.
    Gandek, B., Ware, J. E., Aaronson, N. K., Apolone, G., Bjorner, J. B., Brazier, J. E., et al. (1998). Cross-validation of item selection and scoring for the SF-12 health survey in nine countries. Journal of Clinical Epidemiology, 51(11), 1171–1178.  https://doi.org/10.1016/S0895-4356(98)00109-7.PubMedCrossRefGoogle Scholar
  47. 47.
    Hays, R. D., Sherbourne, C. D., & Mazel, R. M. (1993). The RAND 36-item health survey 1.0. Health Economics, 2(3), 217–227.PubMedCrossRefGoogle Scholar
  48. 48.
    Davison, S. N., Jhangri, G. S., & Johnson, J. A. (2006). Cross-sectional validity of a modified Edmonton Symptom Assessment System in dialysis patients: A simple assessment of symptom burden. Kidney International, 69(9), 1621–1625.  https://doi.org/10.1038/sj.ki.5000184.PubMedCrossRefGoogle Scholar
  49. 49.
    Watanabe, S. M., Nekolaichuk, C. L., & Beaumont, C. (2012). The Edmonton Symptom Assessment System, a proposed tool for distress screening in cancer patients: Development and refinement. Psycho-Oncology, 21(9), 977–985.  https://doi.org/10.1002/pon.1996.PubMedCrossRefGoogle Scholar
  50. 50.
    Bruera, E., Kuehn, N., Miller, M. J., Selmser, P., & Macmillan, K. (1991). The Edmonton symptom assessment system (ESAS): A simple method for the assessment of palliative care patients. Journal of Palliative Care, 7(2), 6–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Pokarowski, M., Liao, S. D.,A. A.,M. K.,O. E., B., et al. (2018). Validation of Edmonton Symptom Assessment System in kidney transplant recipients (KTR). American Transplant Congress, June 2–6, 2018; Seattle, Washington.Google Scholar
  52. 52.
    Davison, S. N., Jhangri, G. S., & Johnson, J. A. (2006). Longitudinal validation of a modified Edmonton Symptom Assessment System (ESAS) in haemodialysis patients. Nephrology, Dialysis, Transplantation, 21(11), 3189–3195.  https://doi.org/10.1093/ndt/gfl380.PubMedCrossRefGoogle Scholar
  53. 53.
    Pokarowski, M., Albdalla, D. S., Khalid, A., Ekundayo, M., Liao, O., Edwards, Y., & Mucsi, N. I. (2017). Validation of Edmonton symptom assessment survey in kidney transplant recipients (KTR). American Journal of Transplantation. 17(suppl 3), 698Google Scholar
  54. 54.
    Davison, S. N., Levin, A., Moss, A. H., Jha, V., Brown, E. A., Brennan, F., et al. (2015). Executive summary of the KDIGO controversies conference on supportive care in chronic kidney disease: Developing a roadmap to improving quality care. Kidney International, 88(3), 447–459.  https://doi.org/10.1038/ki.2015.110.PubMedCrossRefGoogle Scholar
  55. 55.
    Kroenke, K., Spitzer, R. L., & Williams, J. B. (2001). The PHQ-9: Validity of a brief depression severity measure. [Research Support, Non-U.S. Gov’t. validation studies. Journal of General Internal Medicine, 16(9), 606–613.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Kroenke, K., Spitzer, R. L., Williams, J. W., Monahan, P. O., & Löwe, B. (2007). Anxiety disorders in primary care: Prevalence, impairment, comorbidity, and detection. Annals of Internal Medicine, 146(5), 317–325.  https://doi.org/10.7326/0003-4819-146-5-200703060-00004.PubMedCrossRefGoogle Scholar
  57. 57.
    Spitzer, R. L., Kroenke, K., Williams, J. B., & Lowe, B. (2006). A brief measure for assessing generalized anxiety disorder: The GAD-7. Archives of Internal Medicine, 166(10), 1092–1097.  https://doi.org/10.1001/archinte.166.10.1092.PubMedCrossRefGoogle Scholar
  58. 58.
    Watnick, S., Wang, P. L., Demadura, T., & Ganzini, L. (2005). Validation of 2 depression screening tools in dialysis patients. American Journal of Kidney Diseases, 46(5), 919–924.  https://doi.org/10.1053/j.ajkd.2005.08.006.PubMedCrossRefGoogle Scholar
  59. 59.
    Chilcot, J., Hudson, J. L., Moss-Morris, R., Carroll, A., Game, D., Simpson, A., et al. (2018). Screening for psychological distress using the Patient Health Questionnaire Anxiety and Depression Scale (PHQ-ADS): Initial validation of structural validity in dialysis patients. General Hospital Psychiatry, 50, 15–19.  https://doi.org/10.1016/j.genhosppsych.2017.09.007.PubMedCrossRefGoogle Scholar
  60. 60.
    Andersen, B. L., DeRubeis, R. J., Berman, B. S., Gruman, J., Champion, V. L., Massie, M. J., et al. (2014). Screening, assessment, and care of anxiety and depressive symptoms in adults with cancer: An American Society of Clinical Oncology guideline adaptation. Journal of Clinical Oncology, 32(15), 1605–1619.  https://doi.org/10.1200/JCO.2013.52.4611.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Howell, D., Keshavarz, H., Esplen, M. J., Hack, T., Hamel, M., Howes, J., et al. (2010). Pan-Canadian practice guideline: Screening, assessment and management of psychosocial distress, major depression and anxiety in adults with cancer. Canadian Partnership Against Cancer (Cancer Journey Action Group) and the Canadian Association of Psychosocial Oncology, 1–344.Google Scholar
  62. 62.
    B. R. A. Kidney Care Committee (Ed.). (2015). Depression and anxiety: The role of kidney care clinics. Vancouver: BC Renal Agency.Google Scholar
  63. 63.
    Abdel-Kader, K., Unruh, M. L., & Weisbord, S. D. (2009). Symptom burden, depression, and quality of life in chronic and end-stage kidney disease. Clinical Journal of the American Society of Nephrology, 4(6), 1057–1064.  https://doi.org/10.2215/cjn.00430109.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Cukor, D., Peterson, R. A., Cohen, S. D., & Kimmel, P. L. (2006). Depression in end-stage renal disease hemodialysis patients. Nature Clinical Practice Nephrology, 2(12), 678–687.  https://doi.org/10.1038/ncpneph0359 PubMedCrossRefGoogle Scholar
  65. 65.
    Greene, G. M. (2013). Description of a psychosocial assessment instrument and risk criteria to support social work recommendations for kidney transplant candidates. Social Work in Health Care, 52(4), 370–396.  https://doi.org/10.1080/00981389.2013.764378.PubMedCrossRefGoogle Scholar
  66. 66.
    Wright, P., Smith, A. B., Keding, A., & Velikova, G. (2011). The social difficulties inventory (SDI): Development of subscales and scoring guidance for staff. Psycho-Oncology, 20(1), 36–43.  https://doi.org/10.1002/pon.1705.PubMedCrossRefGoogle Scholar
  67. 67.
    Ashley, L., Velikova, G., Downing, A., Morris, E., & Wright, P. (2017). Health-related quality of life in cancer survivorship: Predictive power of the social difficulties inventory. Psychooncology, 26(11), 1994–1997.  https://doi.org/10.1002/pon.4368.PubMedCrossRefGoogle Scholar
  68. 68.
    Wright, E. P., Kiely, M., Johnston, C., Smith, A. B., Cull, A., & Selby, P. J. (2005). Development and evaluation of an instrument to assess social difficulties in routine oncology practice. Qual Life Res, 14(2), 373–386.PubMedCrossRefGoogle Scholar
  69. 69.
    Kwok, M., Liao, B., Wong, D., Tang, E., Khalafi, F., Edwards, N., et al. (2017). Psychosocial distress and health related quality of life in kidney transplant recipients. Paper presented at the CST-CNTRP-SQT Joint Scientific Meeting Halifax, NS, Canada.Google Scholar
  70. 70.
    Richardson, C., Belenko, D., Mucsi, E. C., Edwards, N., Wong, D., Novak, M., et al. (2017). Psychosocial distress in chronic kidney disease: Benefits of kidney transplantation. Paper presented at the American Transplant Congress, Chicago, IL, USA.Google Scholar
  71. 71.
    Tavakol, M., & Dennick, R. (2011). Making sense of Cronbach’s alpha. International Journal of Medical Education, 2, 53–55.  https://doi.org/10.5116/ijme.4dfb.8dfd.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Bland, J. M., & Altman, D. G. (1997). Statistics notes: Cronbach’s alpha. BMJ, 314(7080), 572.  https://doi.org/10.1136/bmj.314.7080.572 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Weir, J. P. (2005). Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. Journal of Strength and Conditioning Research, 19(1), 231–240.  https://doi.org/10.1519/15184.1.PubMedCrossRefGoogle Scholar
  74. 74.
    Byrne, B. M. (1994). Structural equation modeling with EQS and EQS-windows: Basic concepts, applications, and programming. Thousand Oaks: Sage Publications, Inc.Google Scholar
  75. 75.
    Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods & Research, 21(2), 230–258.  https://doi.org/10.1177/0049124192021002005.CrossRefGoogle Scholar
  76. 76.
    Hinkle, D. E., Wiersma, W., & Jurs, S. G. (2003). Applied Statistics for the Behavioral Sciences (Vol. 663): Boston: Houghton Mifflin.Google Scholar
  77. 77.
    Ruscio, J. (2008). A probability-based measure of effect size: Robustness to base rates and other factors. Psychological Methods, 13(1), 19–30.  https://doi.org/10.1037/1082-989x.13.1.19.PubMedCrossRefGoogle Scholar
  78. 78.
    Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd). Hillsdale: Erlbaum.Google Scholar
  79. 79.
    Bear, R. A., & Stockie, S. (2014). Patient engagement and patient-centred care in the management of advanced chronic kidney disease and chronic kidney failure. Canadian Journal of Kidney Health and Disease, 1, 24.  https://doi.org/10.1186/s40697-014-0024-7.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Hemmelgarn, B. R., Pannu, N., Ahmed, S. B., Elliott, M. J., Tam-Tham, H., Lillie, E., et al. (2017). Determining the research priorities for patients with chronic kidney disease not on dialysis. Nephrology, Dialysis, Transplantation, 32(5), 847–854.  https://doi.org/10.1093/ndt/gfw065.PubMedCrossRefGoogle Scholar
  81. 81.
    Tong, A., Sainsbury, P., Carter, S. M., Hall, B., Harris, D. C., Walker, R. G., et al. (2008). Patients’ priorities for health research: Focus group study of patients with chronic kidney disease. Nephrology, Dialysis, Transplantation, 23(10), 3206–3214.  https://doi.org/10.1093/ndt/gfn207.PubMedCrossRefGoogle Scholar
  82. 82.
    Knight, S. R., Metcalfe, L., O’Donoghue, K., Ball, S. T., Beale, A., Beale, W., et al. (2016). Defining priorities for future research: Results of the UK kidney transplant priority setting partnership. PloS ONE, 11(10), e0162136.  https://doi.org/10.1371/journal.pone.0162136.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Quach, C. W., Langer, M. M., Chen, R. C., Thissen, D., Usinger, D. S., Emerson, M. A., et al. (2016). Reliability and validity of PROMIS measures administered by telephone interview in a longitudinal localized prostate cancer study. Quality of Life Research, 25(11), 2811–2823.  https://doi.org/10.1007/s11136-016-1325-3.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Peter, M. K., Wilco, H. M. E., & Klaas, S. (2013). Assessing individual change using short tests and questionnaires. Applied Psychological Measurement, 38(3), 201–216.  https://doi.org/10.1177/0146621613510061.CrossRefGoogle Scholar
  85. 85.
    Ziegler, M., Kemper, C. J., & Kruyen, P. (2014). Short scales—five misunderstandings and ways to overcome them. Journal of Individual Differences, 35(4), 185–189.  https://doi.org/10.1027/1614-0001/a000148.CrossRefGoogle Scholar
  86. 86.
    Heene, M., Bollmann, S., & Bühner, M. (2014). Much ado about nothing, or much to do about something? Journal of Individual Differences, 35(4), 245–249.  https://doi.org/10.1027/1614-0001/a000146.CrossRefGoogle Scholar
  87. 87.
    Broderick, J. E., DeWitt, E. M., Rothrock, N., Crane, P. K., & Forrest, C. B. (2013). Advances in patient-reported outcomes: The NIH PROMIS(®) Measures. EGEMS, 1(1), 1015.  https://doi.org/10.13063/2327-9214.1015.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Fukunishi, I., Hasegawa, A., Ohara, T., Aikawa, A., Hatanaka, A., Suzuki, J., et al. (1997). Kidney transplantation and liaison psychiatry, part I: Anxiety before, and the prevalence rate of psychiatric disorders before and after, transplantation. Psychiatry and Clinical Neurosciences, 51(5), 301–304.  https://doi.org/10.1111/j.1440-1819.1997.tb03202.x.PubMedCrossRefGoogle Scholar
  89. 89.
    Chandrasekaran, A., Anand, G., Sharma, L., Pesavanto, T., Hauenstein, M. L., Nguyen, M., et al. (2016). Role of in-hospital care quality in reducing anxiety and readmissions of kidney transplant recipients. Journal of Surgical Research, 205(1), 252–259.e251.  https://doi.org/10.1016/j.jss.2016.05.032.PubMedCrossRefGoogle Scholar
  90. 90.
    Parsaei Mehr, Z., Hami, M., & Moshtagh Eshgh, Z. (2011). Anxiety and depression: A comparison between living and cadaveric renal transplant recipients. International Journal of Organ Transplantation Medicine, 2(4), 178–183.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Karaminia, R., Tavallaii, S. A., Lorgard-Dezfuli-Nejad, M., Moghani Lankarani, M., Mirzaie, H., Einollahi, H., B., et al. (2007). Anxiety and depression: A comparison between renal transplant recipients and hemodialysis patients. Transplantation Proceedings, 39(4), 1082–1084.  https://doi.org/10.1016/j.transproceed.2007.03.088.PubMedCrossRefGoogle Scholar
  92. 92.
    Ferris, M. E., Miles, J. A., & Seamon, M. L. (2016). Adolescents and young adults with chronic or end-stage kidney disease. Blood Purification, 41(1–3), 205–210.PubMedCrossRefGoogle Scholar
  93. 93.
    Paz, S. H., Spritzer, K. L., Morales, L. S., & Hays, R. D. (2013). Age-related differential item functioning for the Patient-Reported Outcomes Measurement Information System (PROMIS®) physical functioning items. Primary Health Care: Open Access, 3(131), 12086.  https://doi.org/10.4172/2167-1079.1000131.CrossRefGoogle Scholar
  94. 94.
    Jana, A. K., Sircar, D., Waikhom, R., Praharaj, S. K., Pandey, R., RayChaudhury, A., et al. (2014). Depression and anxiety as potential correlates of post-transplantation renal function and quality of life. Indian Journal of Nephrology, 24(5), 286–290.  https://doi.org/10.4103/0971-4065.132996.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Esposito, P., Furini, F., Rampino, T., Gregorini, M., Petrucci, L., Klersy, C., et al. (2017). Assessment of physical performance and quality of life in kidney-transplanted patients: A cross-sectional study. Clinical Kidney Journal, 10(1), 124–130.  https://doi.org/10.1093/ckj/sfw102.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Evan Tang
    • 1
  • Oladapo Ekundayo
    • 1
  • John Devin Peipert
    • 2
  • Nathaniel Edwards
    • 1
  • Aarushi Bansal
    • 1
  • Candice Richardson
    • 1
  • Susan J. Bartlett
    • 3
  • Doris Howell
    • 4
  • Madeline Li
    • 5
  • David Cella
    • 2
  • Marta Novak
    • 1
    • 6
  • Istvan Mucsi
    • 1
    • 7
    Email author
  1. 1.Division of Nephrology, Multi-Organ Transplant ProgramUniversity Health Network and University of TorontoTorontoCanada
  2. 2.Department of Medical Social Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoUSA
  3. 3.Center for Health Outcomes ResearchMcGill UniversityMontrealCanada
  4. 4.Princess Margaret Cancer Center, Faculty of NursingUniversity of TorontoTorontoCanada
  5. 5.Psychosocial OncologyPrincess Margaret Cancer CentreTorontoCanada
  6. 6.Centre for Mental HealthUniversity Health NetworkTorontoCanada
  7. 7.Multi-Organ Transplant Unit, Toronto General HospitalUniversity Health NetworkTorontoCanada

Personalised recommendations