Quality of Life Research

, Volume 27, Issue 7, pp 1801–1814 | Cite as

Do country-specific preference weights matter in the choice of mapping algorithms? The case of mapping the Diabetes-39 onto eight country-specific EQ-5D-5L value sets

  • Admassu N. Lamu
  • Gang ChenEmail author
  • Thor Gamst-Klaussen
  • Jan Abel Olsen



To develop mapping algorithms that transform Diabetes-39 (D-39) scores onto EQ-5D-5L utility values for each of eight recently published country-specific EQ-5D-5L value sets, and to compare mapping functions across the EQ-5D-5L value sets.


Data include 924 individuals with self-reported diabetes from six countries. The D-39 dimensions, age and gender were used as potential predictors for EQ-5D-5L utilities, which were scored using value sets from eight countries (England, Netherland, Spain, Canada, Uruguay, China, Japan and Korea). Ordinary least squares, generalised linear model, beta binomial regression, fractional regression, MM estimation and censored least absolute deviation were used to estimate the mapping algorithms. The optimal algorithm for each country-specific value set was primarily selected based on normalised root mean square error (NRMSE), normalised mean absolute error (NMAE) and adjusted-r2. Cross-validation with fivefold approach was conducted to test the generalizability of each model.


The fractional regression model with loglog as a link function consistently performed best in all country-specific value sets. For instance, the NRMSE (0.1282) and NMAE (0.0914) were the lowest, while adjusted-r2 was the highest (52.5%) when the English value set was considered. Among D-39 dimensions, the energy and mobility was the only one that was consistently significant for all models.


The D-39 can be mapped onto the EQ-5D-5L utilities with good predictive accuracy. The fractional regression model, which is appropriate for handling bounded outcomes, outperformed other candidate methods in all country-specific value sets. However, the regression coefficients differed reflecting preference heterogeneity across countries.


Mapping Diabetes-39 EQ-5D-5L HRQoL Utility QALY 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical approval was granted by the Monash University Human Research Ethics Committee [Reference No. CF11/ 3192–2011001748]. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Brazier, J., & Dixon, S. (1995). The use of condition specific outcome measures in economic appraisal. Health Economics, 4(4), 255–264. Scholar
  2. 2.
    Dolan, P. (1997). Modeling valuations for EuroQol health states. Medical Care, Scholar
  3. 3.
    Longworth, L., & Rowen, D. (2013). Mapping to obtain EQ-5D utility values for use in NICE health technology assessments. Value in Health, 16(1), 202–210. Scholar
  4. 4.
    Brazier, J., Ratcliffe, J., Saloman, J., & Tsuchiya, A. (2017). Measuring and valuing health benefits for economic evaluation. Oxford: Oxford University Press.Google Scholar
  5. 5.
    WHO. (2016). Global report on diabetes. France: World Health Organization.Google Scholar
  6. 6.
    IDF. (2015). Diabetes Atlas (7th edn.). Brussels: International Diabetes Federation (IDF).Google Scholar
  7. 7.
    Drummond, M. F., Sculpher, M. J., Torrance, G. W., O’Brien, B. J., & Stoddart, G. L. (2015). Methods for the economic evaluation of health care programme (4th edn.). Oxford: Oxford University Press: Oxford.Google Scholar
  8. 8.
    Boyer, J. G., & Earp, J. A. (1997). The development of an instrument for assessing the quality of life of people with diabetes: Diabetes-39. Medical Care, 35(5), 440–453.CrossRefPubMedGoogle Scholar
  9. 9.
    Richardson, J., McKie, J., & Bariola, E. (2014). Multi attribute utility instruments and their use. In A. J. Culyer (Ed.), Encyclopedia of health economics (pp. 341–357). San Diego: Elsevier Science.CrossRefGoogle Scholar
  10. 10.
    Wisløff, T., Hagen, G., Hamidi, V., Movik, E., Klemp, M., & Olsen, J. A. (2014). Estimating QALY gains in applied studies: A review of cost-utility analyses published in 2010. Pharmacoeconomics, 32(4), 367–375. Scholar
  11. 11.
    Devlin, N. J., & Brooks, R. (2017). EQ-5D and the EuroQol group: Past, present and future. Applied Health Economics and Health Policy, 15(2), 127–137. Scholar
  12. 12.
    NICE (National Institute for Health and Care Excellence). (2013). Guide to the methods of technology appraisal. London: National Health Service. Retrieved September 18, 2017, from
  13. 13.
    Dakin, H. (2013). Review of studies mapping from quality of life or clinical measures to EQ-5D: an online database. Health Qual Life Outcomes. Scholar
  14. 14.
    Chen, G., Iezzi, A., McKie, J., Khan, M. A., & Richardson, J. (2015). Diabetes and quality of life: Comparing results from utility instruments and Diabetes-39. Diabetes Research and Clinical Practice, 109(2), 326–333. Scholar
  15. 15.
    van Hout, B., Janssen, M. F., Feng, Y.-S., Kohlmann, T., Busschbach, J., Golicki, D., Lloyd, A., Scalone, L., Kind, P., & Pickard, A. S. (2012). Interim scoring for the EQ-5D-5L: Mapping the EQ-5D-5L to EQ-5D-3L Value Sets. Value in Health, 15(5), 708–715. Scholar
  16. 16.
    Augustovski, F., Rey-Ares, L., Irazola, V., Garay, O. U., Gianneo, O., Fernandez, G., Morales, M., Gibbons, L., & Ramos-Goni, J. M. (2015). An EQ-5D-5L value set based on Uruguayan population preferences. Quality of Life Research. Scholar
  17. 17.
    Kim, S.-H., Ahn, J., Ock, M., Shin, S., Park, J., Luo, N., & Jo, M.-W. (2016). The EQ-5D-5L valuation study in Korea. Quality of Life Research, 25(7), 1845–1852. Scholar
  18. 18.
    Luo, N., Liu, G., Li, M., Guan, H., Jin, X., & Rand-Hendriksen, K. (2017). Estimating an EQ-5D-5L Value Set for China. Value in Health, 20(4), 662–669. Scholar
  19. 19.
    Ramos-Goni, J. M., Pinto-Prades, J. L., Oppe, M., Cabases, J. M., Serrano-Aguilar, P., & Rivero-Arias, O. (2014). Valuation and modeling of EQ-5D-5L health states using a hybrid approach. Medical Care. Scholar
  20. 20.
    Versteegh, M. M., Vermeulen, K. M., Evers, S. M. A. A., de Wit, G. A., Prenger, R., & Stolk, E. A. (2016). Dutch Tariff for the five-level version of EQ-5D. Value in Health. Scholar
  21. 21.
    Xie, F., Pullenayegum, E., Gaebel, K., Bansback, N., Bryan, S., Ohinmaa, A., Poissant, L., & Johnson, J. A. (2015). A time trade-off-derived value set of the EQ-5D-5L for Canada. Medical Care. Scholar
  22. 22.
    Devlin, N. J., Shah, K. K., Feng, Y., Mulhern, B., & van Hout, B. (2017). Valuing health-related quality of life: An EQ-5D-5L value set for England. Health Economics. Scholar
  23. 23.
    Shiroiwa, T., Ikeda, S., Noto, S., Igarashi, A., Fukuda, T., Saito, S., & Shimozuma, K. (2016). Comparison of value set based on DCE and/or TTO data: Scoring for EQ-5D-5L health states in Japan. Value in Health, 19(5), 648–654. Scholar
  24. 24.
    Petrou, S., Rivero-Arias, O., Dakin, H., Longworth, L., Oppe, M., Froud, R., & Gray, A. (2015). Preferred reporting items for studies mapping onto preference-based outcome measures: The MAPS statement. Health and Quality of Life Outcomes, 13(1), 106. Scholar
  25. 25.
    Richardson, J., Iezzi, A., & Maxwell, A. (2012). Cross-national comparison of twelve quality of life instruments: Mic Paper 1 background, questions, instruments. Research Paper 76. Retrieved November 23, 2017, from
  26. 26.
    Kaambwa, B., Chen, G., Ratcliffe, J., Iezzi, A., Maxwell, A., & Richardson, J. (2017). Mapping between the Sydney Asthma Quality of Life Questionnaire (AQLQ-S) and five multi-attribute utility instruments (MAUIs). Pharmacoeconomics, 35(1), 111–124. Scholar
  27. 27.
    Mihalopoulos, C., Chen, G., Iezzi, A., Khan, M. A., & Richardson, J. (2014). Assessing outcomes for cost-utility analysis in depression: Comparison of five multi-attribute utility instruments with two depression-specific outcome measures. British Journal of Psychiatry, 205(5), 390–397. Scholar
  28. 28.
    Chen, G., McKie, J., Khan, M. A., & Richardson, J. R. (2014). Deriving health utilities from the MacNew Heart Disease Quality of Life Questionnaire. European Journal of Cardiovascular Nursing, 14(5), 405–415. Scholar
  29. 29.
    Herdman, M., Gudex, C., Lloyd, A., Janssen, M., Kind, P., Parkin, D., Bonsel, G., & Badia, X. (2011). Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). Quality of Life Research, 20(10), 1727–1736. Scholar
  30. 30.
    Olsen, J. A., Lamu, A. N., & Cairns, J. (2018). In search of a common currency: A comparison of seven EQ-5D-5L value sets. Health Economics, 27(1), 39–49. Scholar
  31. 31.
    Vyas, S., & Kumaranayake, L. (2006). Constructing socio-economic status indices: how to use principal components analysis. Health Policy and Planning, 21(6), 459–468. Scholar
  32. 32.
    Oppe, M., Devlin, N., & Black, N. (2011). Comparison of the underlying constructs of the EQ-5D and Oxford Hip Score: Implications for mapping. Value in Health, 14(6), 884–891. Scholar
  33. 33.
    Jobson, J. (2012). Applied multivariate data analysis: Volume II: Categorical and multivariate methods. New York: Springer.Google Scholar
  34. 34.
    Yaremko, R. M., Harari, H., Harrison, R. C., & Lynn, E. (2013). Handbook of research and quantitative methods in psychology: For students and professionals. Abingdon: Taylor & Francis.CrossRefGoogle Scholar
  35. 35.
    Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272–299. DOI.CrossRefGoogle Scholar
  36. 36.
    Brazier, J. E., Yang, Y., Tsuchiya, A., & Rowen, D. L. (2010). A review of studies mapping (or cross walking) non-preference based measures of health to generic preference-based measures. The European Journal of Health Economics. Scholar
  37. 37.
    Yohai, V. J. (1987). High breakdown-point and high efficiency robust estimates for regression. The Annals of Statistics, 15(2), 642–656.CrossRefGoogle Scholar
  38. 38.
    Susanti, Y., Pratiwi, H. (2014). M estimation, S estimation, and MM estimation in robust regression. International Journal of Pure and Applied Mathematics, 91(3), 349–360. Scholar
  39. 39.
    Ayinde, K., Lukman, A. F., & Arowolo, O. (2015). Robust regression diagnostics of influential observations in Linear Regression Model. Open Journal of Statistics. Scholar
  40. 40.
    Powell, J. L. (1984). Least absolute deviations estimation for the censored regression model. Journal of Econometrics, 25(3), 303–325. Scholar
  41. 41.
    Hao, L., & Naiman, D. Q. (2007). Quantile regression. Thousand Oaks: SAGE Publications.CrossRefGoogle Scholar
  42. 42.
    Papke, L. E., & Wooldridge, J. M. (1996). Econometric methods for fractional response variables with an application to 401(k) plan participation rates. Journal of Applied Econometrics, 11(6), 619–632.CrossRefGoogle Scholar
  43. 43.
    Ramalho, E. A., Ramalho, J. J. S., & Murteira, J. M. R. (2011). Alternative estimating and testing empirical strategies for Fractional Regression Models. Journal of Economic Surveys, 25(1), 19–68. Scholar
  44. 44.
    Ramalho, E. A., Ramalho, J. J. S., & Murteira, J. M. R. (2014). A Generalized goodness-of-functional form test for Binary and Fractional Regression Models. The Manchester School, 82(4), 488–507. Scholar
  45. 45.
    Ramalho, J. J. S., & da Silva, J. V. (2009). A two-part fractional regression model for the financial leverage decisions of micro, small, medium and large firms. Quantitative Finance, 9(5), 621–636. Scholar
  46. 46.
    Davidson, R., & MacKinnon, J. G. (1981). Several tests for model specification in the presence of alternative hypotheses. Econometrica, 49(3), 781–793. Scholar
  47. 47.
    Ferrari, S. L. P., & Cribari-Neto, F. (2004). Beta regression or modeling rates and proportions. Journal of Applied Statistics, 31(7), 799–815. Scholar
  48. 48.
    Paolino, P. (2001). Maximum likelihood estimation of models with beta distributed dependent variables. Political Analysis. Scholar
  49. 49.
    Hunger, M., Baumert, J., & Holle, R. Analysis of SF-6D Index Data: Is beta regression appropriate? Value in Health, 14(5), 759–767.
  50. 50.
    Smithson, M., & Verkuilen, J. (2006). A better lemon squeezer? Maximum-likelihood regression with beta distributed dependent variables. Psychological Methods. Scholar
  51. 51.
    Versteegh, M. M., Leunis, A., Luime, J. J., Boggild, M., Uyl-de Groot, C. A., & Stolk, E. A. (2012). Mapping QLQ-C30, HAQ, and MSIS-29 on EQ-5D. Medical Decision Making. Scholar
  52. 52.
    Barnhart, H. X., Haber, M., & Song, J. (2002). Overall concordance correlation coefficient for evaluating agreement among multiple observers. Biometrics, 58(4), 1020–1027.CrossRefPubMedGoogle Scholar
  53. 53.
    Andrews, G., & Slade, T. (2001). Interpreting scores on the Kessler Psychological Distress Scale (K10). Australian and New Zealand Journal of Public Health, 25(6), 494–497.CrossRefPubMedGoogle Scholar
  54. 54.
    Gray, A. M., Rivero-Arias, O., & Clarke, P. M. (2006). Estimating the association between SF-12 responses and EQ-5D utility values by response mapping. Medical Decision Making, 26(1), 18–29. Scholar
  55. 55.
    Boland, M. R. S., van Boven, J. F. M., Kocks, J. W. H., van der Molen, T., Goossens, L. M., Chavannes, N. H., & Rutten-van Mölken, M. P. M. H. (2015). Mapping the clinical chronic obstructive pulmonary disease questionnaire onto generic preference-based EQ-5D values. Value in Health, 18(2), 299–307. Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Community MedicineUniversity of TromsøTromsøNorway
  2. 2.Centre for Health Economics, Monash Business SchoolMonash UniversityMelbourneAustralia

Personalised recommendations