Advertisement

Quality of Life Research

, Volume 27, Issue 3, pp 811–822 | Cite as

Evaluating cognition in individuals with Huntington disease: Neuro-QoL cognitive functioning measures

  • Jin-Shei LaiEmail author
  • Siera Goodnight
  • Nancy R. Downing
  • Rebecca E. Ready
  • Jane S. Paulsen
  • Anna L. Kratz
  • Julie C. Stout
  • Michael K. McCormack
  • David Cella
  • Christopher Ross
  • Jenna Russell
  • Noelle E. Carlozzi
Article

Abstract

Purpose

Cognitive functioning impacts health-related quality of life (HRQOL) for individuals with Huntington disease (HD). The Neuro-QoL includes two patient-reported outcome (PRO) measures of cognition—Executive Function (EF) and General Concerns (GC). These measures have not previously been validated for use in HD. The purpose of this analysis is to evaluate the reliability and validity of the Neuro-QoL Cognitive Function measures for use in HD.

Methods

Five hundred ten individuals with prodromal or manifest HD completed the Neuro-QoL Cognition measures, two other PRO measures of HRQOL (WHODAS 2.0 and EQ5D), and a depression measure (PROMIS Depression). Measures of functioning The Total Functional Capacity and behavior (Problem Behaviors Assessment) were completed by clinician interview. Objective measures of cognition were obtained using clinician-administered Symbol Digit Modalities Test and the Stroop Test (Word, Color, and Interference). Self-rated, clinician-rated, and objective composite scores were developed. We examined the Neuro-QoL measures for reliability, convergent validity, discriminant validity, and known-groups validity.

Results

Excellent reliabilities (Cronbach’s alphas ≥ 0.94) were found. Convergent validity was supported, with strong relationships between self-reported measures of cognition. Discriminant validity was supported by less robust correlations between self-reported cognition and other constructs. Prodromal participants reported fewer cognitive problems than manifest groups, and early-stage HD participants reported fewer problems than late-stage HD participants.

Conclusions

The Neuro-QoL Cognition measures provide reliable and valid assessments of self-reported cognitive functioning for individuals with HD. Findings support the utility of these measures for assessing self-reported cognition.

Keywords

Huntington disease Cognition Neuro-QoL Patient-centered outcomes 

Notes

Acknowledgements

Work on this manuscript was supported by the National Institutes of Health (NIH), National Institute of Neurological Disorders and Stroke (R01NS077946), and the National Center for Advancing Translational Sciences (UL1TR000433). In addition, a portion of this study sample was collected in conjunction with the Predict-HD study. The Predict-HD study was supported by the NIH, National Institute of Neurological Disorders and Stroke (R01NS040068), the NIH Center for Inherited Disease Research (provided supported for sample phenotyping), and the CHDI Foundation (award to the University of Iowa). Dr. Kratz was supported during manuscript preparation by a grant from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (1K01AR064275; PI: Kratz). We thank the University of Iowa, the Investigators and Coordinators of this study, the study participants, the National Research Roster for Huntington Disease Patients and Families, the Huntington Study Group, and the Huntington’s Disease Society of America. We acknowledge the assistance of Jeffrey D. Long, Hans J. Johnson, Jeremy H. Bockholt, and Roland Zschiegner. We also acknowledge Roger Albin, Kelvin Chou, and Henry Paulsen for the assistance with participant recruitment. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. HDQLIFE Site Investigators and Coordinators: Noelle Carlozzi, Praveen Dayalu, Anna L. Kratz, Stephen Schilling, Amy Austin, Matthew Canter, Siera Goodnight, Jennifer Miner, Nicholas Migliore (University of Michigan, Ann Arbor, MI); Jane S. Paulsen, Nancy Downing, Isabella DeSoriano, Courtney Hobart, Amanda Miller (University of Iowa, Iowa City, IA); Kimberly Quaid, Melissa Wesson (Indiana University, Indianapolis, IN); Christopher Ross, Gregory Churchill, Mary Jane Ong (Johns Hopkins University, Baltimore, MD); Susan Perlman, Brian Clemente, Aaron Fisher, Gloria Obialisi, Michael Rosco (University of California Los Angeles, Los Angeles, CA); Michael McCormack, Humberto Marin, Allison Dicke (Rutgers University, Piscataway, NJ); Joel Perlmutter, Stacey Barton, Shineeka Smith (Washington University, St. Louis, MO); Martha Nance, Pat Ede (Struthers Parkinson’s Center); Stephen Rao, Anwar Ahmed, Michael Lengen, Lyla Mourany, Christine Reece, (Cleveland Clinic Foundation, Cleveland, OH); Michael Geschwind, Joseph Winer (University of California – San Francisco, San Francisco, CA), David Cella, Richard Gershon, Elizabeth Hahn, Jin-Shei Lai (Northwestern University, Chicago, IL).

Compliance with ethical standards

Conflict of interest

All authors report no disclosures and no conflicts of interest relevant to the manuscript.

Ethical approval

This project was approved by the Institutional Research Board of all participating institutions. All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11136_2017_1755_MOESM1_ESM.docx (42 kb)
Supplementary material 1 (DOCX 42 KB)
11136_2017_1755_MOESM2_ESM.docx (36 kb)
Supplementary material 2 (DOCX 35 KB)

References

  1. 1.
    MacDonald, M. E., Ambrose, C. M., Duyao, M. P., Myers, R. H., Lin, C., Srinidhi, L., Barnes, G., Taylor, S. A., James, M., & Groot, N. & Huntington’s Disease Collaborative Research Group. (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 72(6), 971–983.CrossRefGoogle Scholar
  2. 2.
    Squitieri, F., Griguoli, A., Capelli, G., Porcellini, A., & D’Alessio, B. (2016). Epidemiology of Huntington disease: First post-HTT gene analysis of prevalence in Italy. Clinical Genetics, 89(3), 367–370.CrossRefPubMedGoogle Scholar
  3. 3.
    Ross, C. A., Aylward, E. H., Wild, E. J., Langbehn, D. R., Long, J. D., Warner, J. H., Scahill, R. I., Leavitt, B. R., Stout, J. C., & Paulsen, J. S. (2014). Huntington disease: Natural history, biomarkers and prospects for therapeutics. Nature Reviews Neurology, 10, 204–216.CrossRefPubMedGoogle Scholar
  4. 4.
    Evans, S. J. W., Douglas, I., Rawlins, M. D., Wexler, N. S., Tabrizi, S. J., & Smeeth, L. (2013). Prevalence of adult Huntington’s disease in the UK based on diagnoses recorded in general practice records. Journal of Neurology, Neurosurgery & Psychiatry, 84(10), 1156–1160.CrossRefGoogle Scholar
  5. 5.
    Rawlins, M. D., Wexler, N. S., Wexler, A. R., Tabrizi, S. J., Douglas, I., Evans, S. J., & Smeeth, L. (2016). The prevalence of huntington’s disease. Neuroepidemiology, 46(2), 144–153.CrossRefPubMedGoogle Scholar
  6. 6.
    Paulsen, J. S. (2010). Early detection of Huntington’s disease. Future Neurology, 5(1), 85–104.CrossRefGoogle Scholar
  7. 7.
    Carlozzi, N. E., & Tulsky, D. S. (2013). Identification of health-related quality of life (HRQOL) issues relevant to individuals with Huntington disease. Journal of Health Psychology, 18(2), 212–225.CrossRefPubMedGoogle Scholar
  8. 8.
    U.S. Department of Health and Human Services. (2000). Healthy people 2010: Understanding and improving health (2nd ed.). Washington, DC: U.S. Government Printing Office.Google Scholar
  9. 9.
    Mickes, L., Jacobson, M., Peavy, G., Wixted, J. T., Lessig, S., Goldstein, J. L., & Corey-Bloom, J. (2010). A comparison of two brief screening measures of cognitive impairment in Huntington’s disease. Movement Disorders, 25(13), 2229–2233.CrossRefPubMedGoogle Scholar
  10. 10.
    Stout, J. C., Glikmann-Johnston, Y., & Andrews, S. C. (2016). Cognitive assessment strategies in Huntington’s disease research. Journal of Neuroscience Methods, 265, 19–24.CrossRefPubMedGoogle Scholar
  11. 11.
    Kremer, H. P. H. & Hungtington Study Group. (1996). Unified Huntington’s disease rating scale: Reliability and consistency. Movement Disorders, 11, 136–142.CrossRefGoogle Scholar
  12. 12.
    Stout, J. C., Paulsen, J. S., Queller, S., Solomon, A. C., Whitlock, K. B., Campbell, J. C., Carlozzi, N., Duff, K., Beglinger, L. J., Langbehn, D. R., Johnson, S. A., Biglan, K. M., & Aylward, E. H. (2011). Neurocognitive signs in prodromal Huntington disease. Neuropsychology, 25(1), 1–14.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Smith, A. (1995). Symbol digit modalities test: Manual. Los Angeles: Western Psychological Services.Google Scholar
  14. 14.
    Stroop, J. R. (1992). Studies of interference in serial verbal reactions (Reprinted from Journal Experimental-Psychology, vol. 18, pp. 643–662, 1935). Journal of Experimental Psychology-General, 121(1), 15–23.CrossRefGoogle Scholar
  15. 15.
    Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643–662.CrossRefGoogle Scholar
  16. 16.
    Benton, A. L., Sivan, A. B., Hamsher, K. D., Varney, N. R., & Spreen, O. (1994). Contributions to neuropsychological assessment (2nd ed.). New York: Oxford University Press.Google Scholar
  17. 17.
    Conway, M. A. (1991). In defense of everyday memory. American Psychologist, 46(1), 19–26.CrossRefGoogle Scholar
  18. 18.
    Loftus, E. F. (1991). The glitter of everyday memory … and the gold. American Psychologist, 46(1), 16–18.CrossRefPubMedGoogle Scholar
  19. 19.
    Chaytor, N., & Schmitter-Edgecombe, M. (2003). The ecological validity of neuropsychological tests: A review of the literature on everyday cognitive skills. Neuropsychology Review, 13(4), 181–197.CrossRefPubMedGoogle Scholar
  20. 20.
    Silver, C. H. (2000). Ecological validity of neuropsychological assessment in childhood traumatic brain injury. The Journal of Head Trauma Rehabilitation, 15(4), 973–988.CrossRefPubMedGoogle Scholar
  21. 21.
    Hutchinson, A. D., Hosking, J. R., Kichenadasse, G., Mattiske, J. K., & Wilson, C. (2012). Objective and subjective cognitive impairment following chemotherapy for cancer: A systematic review. Cancer Treatment Reviews, 38(7), 926–934.CrossRefPubMedGoogle Scholar
  22. 22.
    Cella, D., Lai, J. S., Nowinski, C., Victorson, D., Peterman, A., Miller, D., Bethoux, F., Heinemann, A., Rubin, S., Cavasos, J., Reder, A., Sufit, R., Simuni, T., Holmes, G., Siderowf, A., Wojna, V., Bode, R., McKinney, N., Podrabsky, T., Wortman, K., Choi, S., Gershon, R., Rothrock, N., & Moy, C. (2012). Neuro-QOL: Brief measures of health-related quality of life for clinical research in neurology. Neurology, 78, 1860–1867.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cella, D., Nowinski, C., Peterman, A., Victorson, D., Miller, D., Lai, J.-S., & Moy, C. (2011). The neurology quality of life measurement (Neuro-QOL) initiative. Archives of Physical Medicine and Rehabilitation, 92(Suppl 1), S28-S36.PubMedCentralGoogle Scholar
  24. 24.
    Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of item response theory. Newbury Park, CA: SAGE Publications, Inc.Google Scholar
  25. 25.
    Wright, B. D., & Masters, G. N. (1985). Rating scale analysis: Rasch measurement. Chicago: MESA Press.Google Scholar
  26. 26.
    Perez, L., Huang, J., Jansky, L., Nowinski, C., Victorson, D., Peterman, A., & Cella, D. (2007). Using focus groups to inform the Neuro-QOL measurement tool: exploring patient-centered, health-related quality of life concepts across neurological conditions. Journal of Neuroscience Nursing, 39(6), 342–353.CrossRefPubMedGoogle Scholar
  27. 27.
    Gershon, R., Lai, J., Bode, R., Choi, S., Moy, C., Bleck, T., Miller, D., Peterman, A., & Cella, D. (2012). Neuro-QOL: Quality of life item banks for adults with neurological disorders: Item development and calibrations based upon clinical and general population testing. Quality of Life Research, 21(3), 475–486.CrossRefPubMedGoogle Scholar
  28. 28.
    Rock, P., Roiser, J., Riedel, W., & Blackwell, A. (2014). Cognitive impairment in depression: A systematic review and meta-analysis. Psychological Medicine, 44(10), 2029.CrossRefPubMedGoogle Scholar
  29. 29.
    Carlozzi, N. E., Schilling, S. G., Lai, J. S., Paulsen, J. S., Hahn, E. A., Perlmutter, J. S., Ross, C. A., Downing, N. R., Kratz, A. L., McCormack, M. K., Nance, M. A., Quaid, K. A., Stout, J. C., Gershon, R. C., Ready, R. E., Miner, J. A., Barton, S. K., Perlman, S. L., Rao, S. M., Frank, S., Shoulson, I., Marin, H., Geschwind, M. D., Dayalu, P., Goodnight, S. M., & Cella, D. (2016). HDQLIFE: Development and assessment of health-related quality of life in Huntington disease (HD). Quality of Life Research, 25(10), 2441–2455.CrossRefPubMedGoogle Scholar
  30. 30.
    Shoulson, I., & Fahn, S. (1979). Huntington disease clinical care and evaluation. Neurology, 29(1), 1–1.CrossRefPubMedGoogle Scholar
  31. 31.
    Marder, K., Zhao, H., Myers, R. H., Cudkowicz, M., Kayson, E., Kieburtz, K., Orme, C., Paulsen, J., Penney, J. B. Jr., Siemers, E., Shoulson, I., & Huntington Study Group. (2000). Rate of functional decline in Huntington’s disease. Neurology, 54(2), 452–458.CrossRefPubMedGoogle Scholar
  32. 32.
    Paulsen, J. S., Wang, C., Duff, K., Barker, R., Nance, M., Beglinger, L., Moser, D., Williams, J. K., Simpson, S., Langbehn, D., & van Kammen, D. P. (2010). Challenges assessing clinical endpoints in early Huntington disease. Movement Disorders, 25(15), 2595–2603.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hanauer, D. A., Mei, Q., Law, J., Khanna, R., & Zheng, K. (2015). Supporting information retrieval from electronic health records: A report of University of Michigan’s nine-year experience in developing and using the Electronic Medical Record Search Engine (EMERSE). Journal of Biomedical Informatics, 55, 290–300.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Paulsen, J. S., Hayden, M., Stout, J. C., Langbehn, D. R., Aylward, E., Ross, C. A., Guttman, M., Nance, M., Kieburtz, K., Oakes, D., Shoulson, I., Kayson, E., Johnson, S., Penziner, E., & Investigators, P.-H. (2006). Preparing for preventive clinical trials—The Predict-HD study. Archives of Neurology, 63(6), 883–890.CrossRefPubMedGoogle Scholar
  35. 35.
    Amtmann, D., Kim, J., Chung, H., Bamer, A. M., Askew, R. L., Wu, S., Cook, K. F., & Johnson, K. L. (2014). Comparing CESD-10, PHQ-9, and PROMIS depression instruments in individuals with multiple sclerosis. Rehabilitation Psychology, 59(2), 220–229.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Pilkonis, P. A., Choi, S. W., Reise, S. P., Stover, A. M., Riley, W. T., & Cella, D. (2011). Item banks for measuring emotional distress from the patient-reported outcomes measurement information system (PROMIS): Depression, anxiety, and anger. Assessment, 18(3), 263–283.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Cella, D., Riley, W., Stone, A., Rothrock, N., Reeve, B., Yount, S., Amtmann, D., Bode, R., Buysse, D., Choi, S., Cook, K., Devellis, R., Dewalt, D., Fries, J. F., Gershon, R., Hahn, E. A., Pilkonis, P., Revicki, D., Rose, M., Weinfurt, K., Hays, R., & Lai, J. S. & PROMIS Cooperative Group. (2010). The patient-reported outcomes measurement information system (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005–2008. Journal of Clinical Epidemiology, 63(11), 1179–1194.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Cella, D., Yount, S., Rothrock, N., Gershon, R., Cook, K., Reeve, B., Ader, D., Fries, J. F., Bruce, B., & Rose, M. (2007). The patient-reported outcomes measurement information system (PROMIS): Progress of an NIH Roadmap Cooperative Group during its first two years. Medical Care, 45(5 Suppl 1), S3–S11.Google Scholar
  39. 39.
    Callaghan, J., Stopford, C., Arran, N., Boisse, M.-F., Coleman, A., Santos, R. D., Dumas, E. M., Hart, E. P., Justo, D., & Owen, G. (2015). Reliability and factor structure of the short problem behaviors assessment for Huntington’s disease (PBA-s) in the TRACK-HD and REGISTRY studies. Journal of Neuropsychiatry and Clinical Neurosciences, 27(1), 59–64.CrossRefPubMedGoogle Scholar
  40. 40.
    Üstün, T. B., Chatterji, S., Kostanjsek, N., Rehm, J., Kennedy, C., Epping-Jordan, J., Saxena, S., Korff, M. v., & Pull, C. (2010). Developing the World Health Organization disability assessment schedule 2.0. Bulletin of the World Health Organization, 88(11), 815–823.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Carlozzi, N. E., Kratz, A. L., Downing, N. R., Goodnight, S., Miner, J. A., Migliore, N., & Paulsen, J. S. (2015). Validity of the 12-item World Health Organization Disability Assessment Schedule 2.0 (WHODAS 2.0) in individuals with Huntington disease (HD). Quality of Life Research, 24(8), 1963–1971CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Stroop, J. R. (1992). Studies of interference in serial verbal reactions (Reprinted from Journal Experimental-Psychology, vol. 18, pp. 643–662, 1935). Journal of Experimental Psychology: General, 121(1), 15.CrossRefGoogle Scholar
  43. 43.
    Beglinger, L. J., O’Rourke, J. J., Wang, C., Langbehn, D. R., Duff, K., & Paulsen, J. S. (2010). Earliest functional declines in Huntington disease. Psychiatry Research, 178(2), 414–418.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New York: Academic Press.Google Scholar
  45. 45.
    DeVellis, R. (2017). Scale development: Theory and applications (4th edn.). Los Angeles, CA: Sage.Google Scholar
  46. 46.
    Cramer, D., & Howitt, D. L. (2004). The Sage dictionary of statistics. Thousand Oaks, CA: Sage.CrossRefGoogle Scholar
  47. 47.
    Andresen, E. M. (2000). Criteria for assessing the tools of disability outcomes research. Archives of Physical Medicine & Rehabilitation, 81(12 Suppl 2), S15–S20.CrossRefGoogle Scholar
  48. 48.
    Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 56(2), 81–105.CrossRefPubMedGoogle Scholar
  49. 49.
    Miles, J., & Shevlin, M. (2001). Applying regression and correlation: A guide for students and researchers. London: Sage Publications, Ltd.Google Scholar
  50. 50.
    Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: L. Erlbaum Associates.Google Scholar
  51. 51.
    Youngstrom, E. A. (2014). A primer on receiver operating characteristic analysis and diagnostic efficiency statistics for pediatric psychology: We are ready to ROC. Journal of Pediatric Psychology, 39(2), 204–221.CrossRefPubMedGoogle Scholar
  52. 52.
    Heaton, R. K., Miller, S. W., Taylor, J. T., & Grant, I. (2004). Revised comprehensive norms for an expanded Halstead-Reitan Battery: Demographically adjusted neuropsychological norms for African American and Caucasian adults. Lutz, FL: Psychological Assessment Resources, Inc.Google Scholar
  53. 53.
    Grimes, D. A., & Schulz, K. F. (2005). Refining clinical diagnosis with likelihood ratios. The Lancet, 365(9469), 1500–1505.CrossRefGoogle Scholar
  54. 54.
    Terwee, C. B., Bot, S. D., de Boer, M. R., van der Windt, D. A., Knol, D. L., Dekker, J., Bouter, L. M., & de Vet, H. C. (2007). Quality criteria were proposed for measurement properties of health status questionnaires. Journal of Clinical Epidemiology, 60(1), 34–42.CrossRefPubMedGoogle Scholar
  55. 55.
    Duff, K., Paulsen, J. S., Beglinger, L. J., Langbehn, D. R., Wang, C., Stout, J. C., Ross, C. A., Aylward, E., Carlozzi, N. E., & Queller, S. (2010). “Frontal” behaviors before the diagnosis of Huntington’s disease and their relationship to markers of disease progression: Evidence of early lack of awareness. The Journal of Neuropsychiatry and Clinical Neurosciences, 22(2), 196–207.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Lai, J.-S., Zelko, F., Krull, K., Cella, D., Nowinski, C., Manley, P., & Goldman, S. (2014). Parent-reported cognition of children with cancer and its potential clinical usefulness. Quality of Life Research, 23(4), 1049–1058.CrossRefPubMedGoogle Scholar
  57. 57.
    Choi, S., Reise, S., Pilkonis, P., Hays, R., & Cella, D. (2010). Efficiency of static and computer adaptive short forms compared to full-length measures of depressive symptoms. Quality of Life Research, 19(1), 125–136.CrossRefPubMedGoogle Scholar
  58. 58.
    Lai, J. S., Zelko, F., Butt, Z., Cella, D., Kieran, M. W., Krull, K. R., Magasi, S., & Goldman, S. (2011). Parent-perceived child cognitive function: Results from a sample drawn from the US general population. Child’s Nervous System, 27(2), 285–293.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Jin-Shei Lai
    • 1
    Email author
  • Siera Goodnight
    • 2
  • Nancy R. Downing
    • 3
  • Rebecca E. Ready
    • 4
  • Jane S. Paulsen
    • 5
  • Anna L. Kratz
    • 2
  • Julie C. Stout
    • 6
  • Michael K. McCormack
    • 7
  • David Cella
    • 1
  • Christopher Ross
    • 8
  • Jenna Russell
    • 2
  • Noelle E. Carlozzi
    • 2
  1. 1.Department of Medical Social SciencesNorthwestern University Feinberg School of MedicineChicagoUSA
  2. 2.Department of Physical Medicine and RehabilitationUniversity of MichiganAnn ArborUSA
  3. 3.College of Nursing, Texas A&MBryanUSA
  4. 4.Department of Psychological and Brain SciencesUniversity of MassachusettsAmherstUSA
  5. 5.Departments of Psychiatry, Neurology, and Psychological and Brain Sciences, Carver College of MedicineThe University of IowaIowa CityUSA
  6. 6.Institute of Cognitive and Clinical Neurosciences, School of Psychological SciencesMonash UniversityClaytonAustralia
  7. 7.Department of PathologyRowan UniversityPiscatawayUSA
  8. 8.Departments of Psychiatry, Neurology, Pharmacology and NeuroscienceJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations