Quality of Life Research

, Volume 27, Issue 3, pp 707–716 | Cite as

Quality of life after hip, vertebral, and distal forearm fragility fractures measured using the EQ-5D-3L, EQ-VAS, and time-trade-off: results from the ICUROS

  • Axel Svedbom
  • Fredrik Borgström
  • Emma Hernlund
  • Oskar Ström
  • Vidmantas Alekna
  • Maria Luisa Bianchi
  • Patricia Clark
  • Manuel Díaz Curiel
  • Hans Peter Dimai
  • Mikk Jürisson
  • Anneli Uusküla
  • Margus Lember
  • Riina Kallikorm
  • Olga Lesnyak
  • Eugene McCloskey
  • Olga Ershova
  • Kerrie M. Sanders
  • Stuart Silverman
  • Marija Tamulaitiene
  • Thierry Thomas
  • Anna N. A. Tosteson
  • Bengt Jönsson
  • John A. Kanis



The International Costs and Utilities Related to Osteoporotic fractures Study is a multinational observational study set up to describe the costs and quality of life (QoL) consequences of fragility fracture. This paper aims to estimate and compare QoL after hip, vertebral, and distal forearm fracture using time-trade-off (TTO), the EuroQol (EQ) Visual Analogue Scale (EQ-VAS), and the EQ-5D-3L valued using the hypothetical UK value set.


Data were collected at four time-points for five QoL point estimates: within 2 weeks after fracture (including pre-fracture recall), and at 4, 12, and 18 months after fracture. Health state utility values (HSUVs) were derived for each fracture type and time-point using the three approaches (TTO, EQ-VAS, EQ-5D-3L). HSUV were used to estimate accumulated QoL loss and QoL multipliers.


In total, 1410 patients (505 with hip, 316 with vertebral, and 589 with distal forearm fracture) were eligible for analysis. Across all time-points for the three fracture types, TTO provided the highest HSUVs, whereas EQ-5D-3L consistently provided the lowest HSUVs directly after fracture. Except for 13–18 months after distal forearm fracture, EQ-5D-3L generated lower QoL multipliers than the other two methods, whereas no equally clear pattern was observed between EQ-VAS and TTO. On average, the most marked differences between the three approaches were observed immediately after the fracture.


The approach to derive QoL markedly influences the estimated QoL impact of fracture. Therefore the choice of approach may be important for the outcome and interpretation of cost-effectiveness analysis of fracture prevention.


Osteoporosis Fracture Health-related quality of life Health utility 



We are grateful to the quality of life and Epidemiology Working Group of the Committee of Scientific Advisors for the International Osteoporosis Foundation under whose supervision this study was undertaken. The Mexican substudy are grateful to Danai Curiel, and Fernando Carlos MHE Mexico City. In Lithuania, gratitude is extended to Violeta Sinkeviciene and Inga Tamulaityte-Morozoviene for skilful technical assistance. In Russia, the following team members provided valuable contributions to the study: Dr. Natalia Toroptsova, Dr. Oxana Nikitinskaya, Dr. Olga Dobrovolskaya (Institute of Rheumatology, RAS, Moscow), Prof. Larissa Menshikova, Dr. Julia Varavko (Medical Institute of Postgraduate Training, Irkutsk), Dr. Ksenia Belova (Yaroslavl State Medical University, Yaroslavl), Dr. Alexander Solodovnikov, Dr. Ksenia Usenko (Ural State Medical University, Yekaterinburg), Prof. Georgij Golubev, Dr. Vyacheslav Grebenshikov (Rostov-on-Don State Medical University, Rostov-on-Don), Prof. Eugenij Zotkin, Dr. Irina Zubkova (North-West Mechnikov State Medical University, Saint-Petersburg), Prof. Alexander Kochish, Dr. Sergej Ivanov (Vreden Institute of Traumatology and Orthopedics, Saint-Petersburg), and Dr. Radik Nurligayanov (City Clinical Hospital # 21, Ufa). The following investigators provided valuable contributions to the Australian substudy: Prof JJ Watts and Professors GC Nicholson, E Seeman, R Prince, G Duque, T Winzenberg, L March, and PR Ebeling. In France, the following gratitude is extended to the following professors Bernard Cortet, Roland Chapurlat, Patrice Fardellone, Philippe Orcel, and Christian Roux. The global study team would like to thank Ingrid Lekander, Erik Landfeldt, Martin Kleman, Moa Ivergård, and Viktor Wintzell for contributing to the study.

Author contributions

FB, AT, BJ, and JAK designed the study. VA, MLB, PC, MDC, HPD, MJ, AU, ML, RK, OL, OM, OE, KMS, SS, MT, and TT led the data collection. AS and EH designed and executed the statistical analyses. AS led the interpretation of findings with inputs from the other authors. AS drafted the manuscript. All authors reviewed the manuscript and approved the submission for publication.

Compliance with ethical standards

Conflict of interest

AS and EH are employees of Mapi, a contract research organization. FB and OS are employed by and own equity in Quantify Research, a contract research organization. JAK received consultancies/speaking fees from AgNovos healthcare, Amgen, D3A, Lilly, Medimaps, Unigene, Radius Health, Pfizer, Servier, and Takeda; and research support from Asahi, Amgen, GSK, Lilly, Medtronic, Novartis, Pfizer, Sanofi-Aventis, Servier, and Warner Chilcott. EM received consultancies, honoraria and speaking fees from ActiveSignal, Alliance for Better Bone Health, Amgen, Bayer, Boehringer Ingelheim, Consilient Healthcare, Eli Lilly, GE Lunar, GSK, Hologic, Internis, Medtronic, Merck, Novartis, Pfizer, Roche, Servier, Synexus, Tethys, and UCB; and research funding from the Alliance for Better Bone Health, Amgen, Arthritis Research UK, EPSRC, Internis, Medical Research Council, and NIHR. HPD reports consultancies, honoraria and speaking fees from Amgen, BRAINCON, Daiichi-Sankyo, Eli Lilly, Merck Sharp & Dohme, Novartis, Nycomed, Servier, Sinapharm, Alexion, Daiichi-Sankyo, Genericon, Kyphon, and Genericon. TT reports consultancies, honoraria and speaking fees, and grants from Abbvie, Amgen, BMS, Chugai/Roche, Eli Lilly, Expanscience, Gilead, Merck Sharp & Dohme, Medac, Thuasne, UCB, HAC-Pharma, LCA, Novartis, Pfizer, Servier, and TEVA. The remaining authors report no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study and all study participants could withdraw from the study at any time at their own request.

Supplementary material

11136_2017_1748_MOESM1_ESM.docx (77 kb)
Supplementary material 1 (DOCX 77 KB)
11136_2017_1748_MOESM2_ESM.docx (12 kb)
Supplementary material 2 (DOCX 12 KB)


  1. 1.
    Neumann, P. J., Goldie, S. J., & Weinstein, M. C. (2000). Preference-based measures in economic evaluation in health care. Annual Review of Public Health, 21, 587–611.CrossRefPubMedGoogle Scholar
  2. 2.
    Neumann, P. J. (2004). Using cost-effectiveness analysis to improve health care: Opportunities and barriers. Oxford: Oxford University Press.CrossRefGoogle Scholar
  3. 3.
    Drummond, M. F., Sculpher, M. J., Claxton, K., Stoddart, G. L., & Torrance, G. W. (2015). Methods for the economic evaluation of health care programmes. Oxford: Oxford university press.Google Scholar
  4. 4.
    Weinstein, M. C., Torrance, G., & McGuire, A. (2009). QALYs: The basics. Value in Health, 12(Suppl 1), S5–S9.CrossRefPubMedGoogle Scholar
  5. 5.
    Torrance, G. W. (1986). Measurement of health state utilities for economic appraisal. Journal of Health Economics, 5(1), 1–30.CrossRefPubMedGoogle Scholar
  6. 6.
    Arnold, D., Girling, A., Stevens, A., & Lilford, R. (2009). Comparison of direct and indirect methods of estimating health state utilities for resource allocation: Review and empirical analysis. BMJ, 339, b2688.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Morimoto, T., & Fukui, T. (2002). Utilities measured by rating scale, time trade-off, and standard gamble: Review and reference for health care professionals. Journal of Epidemiology, 12(2), 160–178.CrossRefPubMedGoogle Scholar
  8. 8.
    Miller, W., Robinson, L. A., & Lawrence, R. S. (2006). Valuing health for regulatory cost-effectiveness analysis. Washington: National Academies Press.Google Scholar
  9. 9.
    Kanis, J. A. (2002). Diagnosis of osteoporosis and assessment of fracture risk. The Lancet, 359(9321), 1929–1936.CrossRefGoogle Scholar
  10. 10.
    Cummings, S. R., & Melton, L. J. (2002). Epidemiology and outcomes of osteoporotic fractures. The Lancet, 359(9319), 1761–1767.CrossRefGoogle Scholar
  11. 11.
    Hallberg, I., Rosenqvist, A. M., Kartous, L., Lofman, O., Wahlstrom, O., & Toss, G. (2004). Health-related quality of life after osteoporotic fractures. Osteoporosis International, 15(10), 834–841.CrossRefPubMedGoogle Scholar
  12. 12.
    Johnell, O., & Kanis, J. A. (2006). An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporosis International, 17(12), 1726–1733.CrossRefPubMedGoogle Scholar
  13. 13.
    Hernlund, E., Svedbom, A., Ivergard, M., Compston, J., Cooper, C., Stenmark, J., McCloskey, E. V., Jonsson, B., & Kanis, J. A. (2013). Osteoporosis in the European Union: Medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Archives of Osteoporosis, 8, 136.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Borgstrom, F., Lekander, I., Ivergard, M., Strom, O., Svedbom, A., Alekna, V., Bianchi, M. L., Clark, P., Curiel, M. D., Dimai, H. P., Jurisson, M., Kallikorm, R., Lesnyak, O., McCloskey, E., Nassonov, E., Sanders, K. M., Silverman, S., Tamulaitiene, M., Thomas, T., Tosteson, A. N., Jonsson, B., & Kanis, J. A. (2013). The international costs and utilities related to osteoporotic fractures study (ICUROS)—Quality of life during the first 4 months after fracture. Osteoporosis International, 24(3), 811–823.CrossRefPubMedGoogle Scholar
  15. 15.
    Torrance, G. W., Thomas, W. H., & Sackett, D. L. (1972). A utility maximization model for evaluation of health care programs. Health Services Research, 7(2), 118.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Oppe, M., Devlin, N. J., & Szende, A. (2007). EQ-5D value sets: Inventory, comparative review and user guide. Cham: Springer.Google Scholar
  17. 17.
    Dolan, P. (1997). Modeling valuations for EuroQol health states. Medical Care, 35(11), 1095–1108.CrossRefPubMedGoogle Scholar
  18. 18.
    Barber, J. A., & Thompson, S. G. (2000). Analysis of cost data in randomized trials: An application of the non-parametric bootstrap. Statistics in Medicine, 19(23), 3219–3236.CrossRefPubMedGoogle Scholar
  19. 19.
    Peeters, Y., & Stiggelbout, A. M. (2010). Health state valuations of patients and the general public analytically compared: A meta-analytical comparison of patient and population health state utilities. Value in Health, 13(2), 306–309.CrossRefPubMedGoogle Scholar
  20. 20.
    Bremner, K. E., Chong, C. A., Tomlinson, G., Alibhai, S. M., & Krahn, M. D. (2007). A review and meta-analysis of prostate cancer utilities. Medical Decision Making, 27(3), 288–298.CrossRefPubMedGoogle Scholar
  21. 21.
    De Wit, G. A., Busschbach, J. J., & De Charro, F. T. (2000). Sensitivity and perspective in the valuation of health status: Whose values count? Health Economics, 9(2), 109–126.CrossRefPubMedGoogle Scholar
  22. 22.
    Noel, C. W., Lee, D. J., Kong, Q., Xu, W., Simpson, C., Brown, D., Gilbert, R. W., Gullane, P. J., Irish, J. C., Huang, S. H., O’Sullivan, B., Goldstein, D. P., & de Almeida, J. R. (2015). Comparison of health state utility measures in patients with head and neck cancer. JAMA Otolaryngol Head Neck Surgery, 141(8), 696–703.CrossRefGoogle Scholar
  23. 23.
    Zethraeus, N., & Johannesson, M. (1999). A comparison of patient and social tariff values derived from the time trade-off method. Health Economics, 8(6), 541–545.CrossRefPubMedGoogle Scholar
  24. 24.
    Gabriel, S. E., Kneeland, T. S., Melton, L. J., 3rd, Moncur, M. M., Ettinger, B., & Tosteson, A. N. (1999). Health-related quality of life in economic evaluations for osteoporosis: Whose values should we use? Medical Decision Making, 19(2), 141–148.CrossRefPubMedGoogle Scholar
  25. 25.
    Brazier, J., Akehurst, R., Brennan, A., Dolan, P., Claxton, K., McCabe, C., Sculpher, M., & Tsuchyia, A. (2005). Should patients have a greater role in valuing health states? Applied Health Economics and Health Policy, 4(4), 201–208.CrossRefPubMedGoogle Scholar
  26. 26.
    Burstrom, K., Johannesson, M., & Diderichsen, F. (2006). A comparison of individual and social time trade-off values for health states in the general population. Health Policy, 76(3), 359–370.CrossRefPubMedGoogle Scholar
  27. 27.
    Versteegh, M. M., & Brouwer, W. B. (2016). Patient and general public preferences for health states: A call to reconsider current guidelines. Social Science & Medicine, 165, 66–74.CrossRefGoogle Scholar
  28. 28.
    Neumann, P. J., Sanders, G. D., Russell, L. B., Siegel, J. E., & Ganiats, T. G. (2016). Cost-effectiveness in health and medicine. Oxford: Oxford University Press.CrossRefGoogle Scholar
  29. 29.
    Excellence, N. I., f., C., & Excellence, N. I. f. C. (2004). Guide to the methods of technology appraisal (p. 12). London: NICE.Google Scholar
  30. 30.
    Nederland, Z. (2015). Richtlijn voor het uitvoeren van economische evaluaties in de gezondheidszorg. Diemen: Zorginstituut Nederland.Google Scholar
  31. 31.
    Weinstein, M. C., Siegel, J. E., Gold, M. R., Kamlet, M. S., & Russell, L. B. (1996). Recommendations of the panel on cost-effectiveness in health and medicine. JAMA, 276(15), 1253–1258.CrossRefPubMedGoogle Scholar
  32. 32.
    Sanders, G. D., Neumann, P. J., Basu, A., Brock, D. W., Feeny, D., Krahn, M., Kuntz, K. M., Meltzer, D. O., Owens, D. K., Prosser, L. A., Salomon, J. A., Sculpher, M. J., Trikalinos, T. A., Russell, L. B., Siegel, J. E., & Ganiats, T. G. (2016). Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: second panel on cost-effectiveness in health and medicine. JAMA, 316(10), 1093–1103.CrossRefPubMedGoogle Scholar
  33. 33.
    Board, P. B. (2003). General Guidelines for economic evaluations from the Pharmaceutical Benefits Board (LFNAR 2003: 2). Solna: Swedish Pharmaceutical Benefits Board.Google Scholar
  34. 34.
    Xie, F., Gaebel, K., Perampaladas, K., Doble, B., & Pullenayegum, E. (2014). Comparing EQ-5D valuation studies: A systematic review and methodological reporting checklist. Medical Decision Making, 34(1), 8–20.CrossRefPubMedGoogle Scholar
  35. 35.
    Oppong, R., Kaambwa, B., Nuttall, J., Hood, K., Smith, R. D., & Coast, J. (2013). The impact of using different tariffs to value EQ-5D health state descriptions: An example from a study of acute cough/lower respiratory tract infections in seven countries. The European Journal of Health Economics, 14(2), 197–209.CrossRefPubMedGoogle Scholar
  36. 36.
    Persson, U. (2014). Hypothetical versus experience-based EQ-5D valuations: What are the implications for health economic evaluations?. Amsterdam: ISPOR.Google Scholar
  37. 37.
    Ekman, M., Berg, J., Wimo, A., Jönsson, L., & McBurney, C. (2007). Health utilities in mild cognitive impairment and dementia: A population study in Sweden. International Journal of Geriatric Psychiatry, 22(7), 649–655.CrossRefPubMedGoogle Scholar
  38. 38.
    Lesnyak, O., Ershova, O., Belova, K., Gladkova, E., Sinitsina, O., Ganert, O., Romanova, M., Khodirev, V., Johansson, H., McCloskey, E., & Kanis, J. A. (2012). Epidemiology of fracture in the Russian Federation and the development of a FRAX model. Archives of Osteoporosis, 7, 67–73.CrossRefPubMedGoogle Scholar
  39. 39.
    Marsh, J., Bryant, D., & MacDonald, S. J. (2009). Older patients can accurately recall their preoperative health status six weeks following total hip arthroplasty. The Journal of Bone & Joint Surgery, 91(12), 2827–2837.CrossRefGoogle Scholar
  40. 40.
    Rohde, G., Haugeberg, G., Mengshoel, A. M., Moum, T., & Wahl, A. K. (2009). No long-term impact of low-energy distal radius fracture on health-related quality of life and global quality of life: A case-control study. BMC Musculoskeletal Disorders, 10, 106.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Borgstrom, F., Zethraeus, N., Johnell, O., Lidgren, L., Ponzer, S., Svensson, O., Abdon, P., Ornstein, E., Lunsjo, K., Thorngren, K. G., Sernbo, I., Rehnberg, C., & Jonsson, B. (2006). Costs and quality of life associated with osteoporosis-related fractures in Sweden. Osteoporosis International, 17(5), 637–650.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  • Axel Svedbom
    • 1
  • Fredrik Borgström
    • 2
  • Emma Hernlund
    • 1
  • Oskar Ström
    • 2
  • Vidmantas Alekna
    • 3
  • Maria Luisa Bianchi
    • 4
  • Patricia Clark
    • 5
  • Manuel Díaz Curiel
    • 6
    • 7
  • Hans Peter Dimai
    • 8
  • Mikk Jürisson
    • 9
  • Anneli Uusküla
    • 9
  • Margus Lember
    • 9
  • Riina Kallikorm
    • 9
  • Olga Lesnyak
    • 10
    • 11
  • Eugene McCloskey
    • 12
  • Olga Ershova
    • 13
  • Kerrie M. Sanders
    • 14
  • Stuart Silverman
    • 15
  • Marija Tamulaitiene
    • 3
  • Thierry Thomas
    • 16
  • Anna N. A. Tosteson
    • 17
  • Bengt Jönsson
    • 18
  • John A. Kanis
    • 14
    • 19
  1. 1.MapiStockholmSweden
  2. 2.LIME/MMC, Karolinska InstitutetStockholmSweden
  3. 3.Faculty of MedicineVilnius UniversityVilniusLithuania
  4. 4.Bone Metabolism UnitIstituto Auxologico Italiano IRCCSMilanItaly
  5. 5.Clinical Epidemiology UnitHospital Infantil Federico Gómez and Faculty of Medicine UNAMMexico CityMexico
  6. 6.Servicio de Medicina Interna/Enfermedades Metabolicas Oseas, Fundacion Jimenez DiazMadridSpain
  7. 7.Catedra de Enfermedades Metabolicas ÓseasUniversidad AutonomaMadridSpain
  8. 8.Division of Endocrinology and Diabetology, Department of Internal MedicineMedical University of GrazGrazAustria
  9. 9.Faculty of MedicineUniversity of TartuTartuEstonia
  10. 10.Ural State Medical UniversityYekaterinburgRussia
  11. 11.North West Mechnikov State Medical UniversitySt. PetersburgRussia
  12. 12.Academic Unit of Bone Metabolism, Centre for Integrated research in Musculoskeletal Ageing, Mellanby Centre for Bone research, University of SheffieldUniversity of SheffieldSheffieldUK
  13. 13.Yaroslavl State Medical UniversityYaroslavlRussia
  14. 14.Institute for Health and AgeingAustralian Catholic UniversityMelbourneAustralia
  15. 15.Cedars-Sinai Medical Center and David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA
  16. 16.INSERM U1059, Lab Biologie Intégrée du Tissu Osseux, Service de Rhumatologie, CHU de Saint-Etienne, Université de LyonSaint EtienneFrance
  17. 17.The Dartmouth Institute for Health Policy and Clinical Practice, Geisel School of Medicine at DartmouthLebanonUSA
  18. 18.Stockholm School of EconomicsStockholmSweden
  19. 19.Centre for Metabolic Bone Diseases, University of SheffieldSheffieldUK

Personalised recommendations