Quality of Life Research

, Volume 26, Issue 9, pp 2541–2550 | Cite as

Parent-reported cognitive function is associated with leukoencephalopathy in children with brain tumors

  • Jin-Shei LaiEmail author
  • Corey Bregman
  • Frank Zelko
  • Cindy Nowinski
  • David Cella
  • Jennifer J. Beaumont
  • Stewart Goldman



Cognitive dysfunction is a major concern for children with brain tumors. A valid, user-friendly screening tool could facilitate prompt referral for comprehensive neuropsychological assessments and therefore early intervention. Applications of the pediatric perceived cognitive function item bank (pedsPCF) such as computerized adaptive testing can potentially serve as such a tool given its brevity and user-friendly nature. This study aimed to evaluate whether pedsPCF was a valid indicator of cerebral compromise using the criterion of structural brain changes indicated by leukoencephalopathy grades.


Data from 99 children (mean age = 12.6 years) with brain tumors and their parents were analyzed. Average time since diagnosis was 5.8 years; time since last treatment was 4.3 years. Leukoencephalopathy grade (range 0–4) was based on white matter damage and degree of deep white matter volume loss shown on MRI. Parents of patients completed the pedsPCF. Scores were based on the US general population-based T-score metric (mean = 50; SD = 10). Higher scores reflect better function.


Leukoencephalopathy grade distributions were as follows: 36 grade 0, 27 grade 1, 22 grade 2, 13 grade 3, and 1 grade 4. The mean pedsPCF T-score was 48.3 (SD = 8.3; range 30.5–63.7). The pedsPCF scores significantly discriminated patients with different leukoencephalopathy grades, F = 4.14, p = 0.0084. Effect sizes ranged from 0.09 (grade 0 vs. 1) to 1.22 (grade 0 vs. 3/4).


This study demonstrates that the pedsPCF is a valid indicator of leukoencephalopathy and provides support for its use as a screening tool for more comprehensive neurocognitive testing.


Brain tumor Pediatrics Leukoencephalopathy Perceived cognitive function Patient-centered outcome 



This work was supported by the National Institutes of Health/National Cancer Institute (R01CA174452; PI: Jin-Shei Lai).

Compliance with ethical standards

Conflicts of interest

All authors (Lai, Bregman, Zelko, Nowinski, Cella, and Goldman) report no disclosures and no conflicts of interest relevant to the manuscript.

Ethical approval

This study was approved by the Institutional Review Boards of both Northwestern University and Lurie Children’s Hospital of Chicago. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Oeffinger, K. C., & Robison, L. L. (2007). Childhood cancer survivors, late effects, and a new model for understanding survivorship. The Journal of the American Medical Association, 297(24), 2762–2764.CrossRefPubMedGoogle Scholar
  2. 2.
    Geenen, M. M., Cardous-Ubbink, M. C., Kremer, L. C., van den, B. C., van der Pal, H. J., Heinen, R. C., et al. (2007). Medical assessment of adverse health outcomes in long-term survivors of childhood cancer. The Journal of the American Medical Association, 297(24), 2705–2715.CrossRefPubMedGoogle Scholar
  3. 3.
    Meyers, C. A., Hess, K. R., Yung, W. K., & Levin, V. A. (2000). Cognitive function as a predictor of survival in patients with recurrent malignant glioma. Journal of Clinical Oncology, 18(3), 646–650.CrossRefPubMedGoogle Scholar
  4. 4.
    Parisi, M. T., Fahmy, J. L., Kaminsky, C. K., & Malogolowkin, M. H. (1999). Complications of cancer therapy in children: A radiologist’s guide. Radiographics, 19(2), 283–297.CrossRefPubMedGoogle Scholar
  5. 5.
    Packer, R. J., Goldwein, J., Nicholson, H. S., Vezina, L. G., Allen, J. C., Ris, M. D., et al. (1999). Treatment of children with medulloblastomas with reduced-dose craniospinal radiation therapy and adjuvant chemotherapy: A Children’s Cancer Group Study. Journal of Clinical Oncology, 17(7), 2127–2136.CrossRefPubMedGoogle Scholar
  6. 6.
    Lavigne, J. V., & Faier-Routman, J. (1992). Psychological adjustment to pediatric physical disorders: A meta-analytic review. Journal of Pediatric Psychology, 17(2), 133–157.CrossRefPubMedGoogle Scholar
  7. 7.
    Patenaude, A. F., & Kupst, M. J. (2005). Psychosocial functioning in pediatric cancer. Journal of Pediatric Psychology, 30(1), 9–27.CrossRefPubMedGoogle Scholar
  8. 8.
    Hays, D. M., Dolgin, M., Steele, L. L., Patenaude, A. F., Hewett, K. D., Ruymann, F., et al. (1997). Educational achievement, employment and workplace experience of adult survivors of childhood cancer. International Journal of Pediatric Hematology/Oncology, 4, 327–337.Google Scholar
  9. 9.
    Packer, R. J., Gurney, J. G., Punyko, J. A., Donaldson, S. S., Inskip, P. D., Stovall, M., et al. (2003). Long-term neurologic and neurosensory sequelae in adult survivors of a childhood brain tumor: Childhood cancer survivor study. Journal of Clinical Oncology, 21(17), 3255–3261.CrossRefPubMedGoogle Scholar
  10. 10.
    Walsh, K. S., Noll, R. B., Annett, R. D., Patel, S. K., Patenaude, A. F., & Embry, L. (2016). Standard of care for neuropsychological monitoring in pediatric neuro-oncology: lessons from the Children’s Oncology Group (COG). Pediatric Blood & Cancer, 63(2), 191–195.CrossRefGoogle Scholar
  11. 11.
    Selove, R., Kroll, T., Coppes, M., & Cheng, Y. (2012). Psychosocial services in the first 30 days after diagnosis: Results of a web-based survey of children’s oncology group (COG) member institutions. Pediatric Blood & Cancer, 58(3), 435–440.CrossRefGoogle Scholar
  12. 12.
    Eisman, E. J., Dies, R. R., Finn, S. E., Eyde, L. D., Kay, G. G., Kubiszyn, T. W., et al. (2000). Problems and limitations in using psychological assessment in the contemporary health care delivery system. Professional Psychology: Research and Practice, 31(2), 131.CrossRefGoogle Scholar
  13. 13.
    Bull, K. S., Liossi, C., Peacock, J. L., Yuen, H. M., & Kennedy, C. R. (2015). Screening for cognitive deficits in 8 to 14-year old children with cerebellar tumors using self-report measures of executive and behavioral functioning and health-related quality of life. Neuro-oncology, 17(12), 1628–1636.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mahone, E. M., Martin, R., Kates, W. R., Hay, T., & Horska, A. (2009). Neuroimaging correlates of parent ratings of working memory in typically developing children. Journal of the International Neuropsychological Society, 15(1), 31–41.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    de Groot, J. C., de Leeuw, F. E., Oudkerk, M., van Gijn, J., Hofman, A., Jolles, J., et al. (2000). Cerebral white matter lesions and cognitive function: The Rotterdam scan study. Annals of Neurology, 47(2), 145–151.CrossRefPubMedGoogle Scholar
  16. 16.
    de Groot, J. C., de Leeuw, F. E., Oudkerk, M., Hofman, A., Jolles, J., & Breteler, M. M. (2001). Cerebral white matter lesions and subjective cognitive dysfunction: The Rotterdam Scan Study. Neurology, 56(11), 1539–1545.CrossRefPubMedGoogle Scholar
  17. 17.
    O’Brien, J., Desmond, P., Ames, D., Schweitzer, I., Harrigan, S., & Tress, B. (1996). A magnetic resonance imaging study of white matter lesions in depression and Alzheimer’s disease. British Journal of Psychiatry, 168(4), 477–485.CrossRefPubMedGoogle Scholar
  18. 18.
    Saykin, A. J., Wishart, H. A., Rabin, L. A., Santulli, R. B., Flashman, L. A., West, J. D., et al. (2006). Older adults with cognitive complaints show brain atrophy similar to that of amnestic MCI. Neurology, 67(5), 834–842.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ferguson, R. J., McDonald, B. C., Saykin, A. J., & Ahles, T. A. (2007). Brain structure and function differences in monozygotic twins: Possible effects of breast cancer chemotherapy. Journal of Clinical Oncology, 25(25), 3866–3870.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Achenbach, T. M. (1991). Integrative guide to the 1991 CBCL/4-18, YSR, and TRF profiles. Burlington, VT: University of Vermont, Department of Psychology.Google Scholar
  21. 21.
    Conners, C. K. (2000). Conners’ rating scales-revised technical manual. North Tonawanda, NY: Multi Health Systems.Google Scholar
  22. 22.
    Gioia, G. A., Isquith, P., Guy, S., & Kenworthy, L. (2000). Behavior rating inventory of executive function (BRIEF): Professional manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
  23. 23.
    Hardy, K. K., Willard, V. W., Wigdor, A. B., Allen, T. M., & Bonner, M. J. (2015). The potential utility of parent-reported attention screening in survivors of childhood cancer to identify those in need of comprehensive neuropsychological evaluation. Neuro-oncology Practice, 2(1), 32–39.CrossRefPubMedGoogle Scholar
  24. 24.
    Lai, J.-S., Butt, Z., Zelko, F., Cella, D., Krull, K., Kieran, M., et al. (2011). Development of a parent-report cognitive function item bank using item response theory and exploration of its clinical utility in computerized adaptive testing. Journal of Pediatric Psychology, 36(7), 766–779.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lai, J.-S., Zelko, F., Krull, K., Cella, D., Nowinski, C., Manley, P., et al. (2014). Parent-reported cognition of children with cancer and its potential clinical usefulness. Quality of Life Research, 23(4), 1049–1058.CrossRefPubMedGoogle Scholar
  26. 26.
    Lai, J.-S., Stucky, B., Thissen, D., Varni, J., DeWitt, E., Irwin, D., et al. (2013). Development and psychometric properties of the PROMIS® pediatric fatigue item banks. Quality of Life Research, 22(9), 2417–2427.CrossRefPubMedGoogle Scholar
  27. 27.
    National Cancer Institute. (2010). Common terminology criteria for adverse events: (CTCAE) Version 4.0. from
  28. 28.
    Schneider, W., Lockl, K., & Perfect, T. (2002). The development of metacognition knowledge in children and adolescents. Applied metacognition (pp. 224EP–259). West Nyack, NY: Cambridge University Press.CrossRefGoogle Scholar
  29. 29.
    Hinds, P. S., Quargnenti, A., Bush, A. J., Pratt, C., Fairclough, D., Rissmiller, G., Betcher, D., & Gilchrist, G. S. (2000). An evaluation of the impact of a self-care coping intervention on psychological and clinical outcomes in adolescents with newly diagnosed cancer. European Journal of Oncology Nursing, 4(1), 6–17; discussion 18–19.Google Scholar
  30. 30.
    DeWitt, E. M., Stucky, B. D., Thissen, D., Irwin, D. E., Langer, M., Varni, J. W., et al. (2011). Construction of the eight-item patient-reported outcomes measurement information system pediatric physical function scales: Built using item response theory. Journal of Clinical Epidemiology, 64(7), 794–804.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Irwin, D. E., Stucky, B., Langer, M. M., Thissen, D., Dewitt, E. M., Lai, J. S., et al. (2010). An item response analysis of the pediatric PROMIS anxiety and depressive symptoms scales. Quality of Life Research, 19(4), 595–607.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Dewalt, D. A., Thissen, D., Stucky, B. D., Langer, M. M., Morgan Dewitt, E., Irwin, D. E., et al. (2013). PROMIS pediatric peer relationships scale: Development of a peer relationships item bank as part of social health measurement. Health Psychology, 32(10), 1093–1103.CrossRefPubMedGoogle Scholar
  33. 33.
    Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: L. Erlbaum Associates.Google Scholar
  34. 34.
    Iuvone, L., Mariotti, P., Colosimo, C., Guzzetta, F., Ruggiero, A., & Riccardi, R. (2002). Long-term cognitive outcome, brain computed tomography scan, and magnetic resonance imaging in children cured for acute lymphoblastic leukemia. Cancer, 95(12), 2562–2570.CrossRefPubMedGoogle Scholar
  35. 35.
    Conklin, H. M., Ogg, R. J., Ashford, J. M., Scoggins, M. A., Zou, P., Clark, K. N., et al. (2015). Computerized cognitive training for amelioration of cognitive late effects among childhood cancer survivors: A randomized controlled trial. Journal of Clinical Oncology, 33(33), 3894–3902.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Butler, R. W., Copeland, D. R., Fairclough, D. L., Mulhern, R. K., Katz, E. R., Kazak, A. E., et al. (2008). A multicenter, randomized clinical trial of a cognitive remediation program for childhood survivors of a pediatric malignancy. Journal of Consulting and Clinical Psychology, 76(3), 367–378.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    van’t Hooft, I., Andersson, K., Bergman, B., Sejersen, T., von Wendt, L., & Bartfai, A. (2007). Sustained favorable effects of cognitive training in children with acquired brain injuries. NeuroRehabilitation, 22(2), 109–116.Google Scholar
  38. 38.
    Moore, I. M., Hockenberry, M. J., Anhalt, C., McCarthy, K., & Krull, K. R. (2012). Mathematics intervention for prevention of neurocognitive deficits in childhood leukemia. Pediatric Blood & Cancer, 59(2), 278–284.CrossRefGoogle Scholar
  39. 39.
    Krull, K. R., Okcu, M. F., Potter, B., Jain, N., Dreyer, Z., Kamdar, K., et al. (2008). Screening for neurocognitive impairment in pediatric cancer long-term survivors. Journal of Clinical Oncology, 26(25), 4138.CrossRefPubMedGoogle Scholar
  40. 40.
    Lageman, S., Cerhan, J., Locke, D. C., Anderson, S. K., Wu, W., & Brown, P. (2010). Comparing neuropsychological tasks to optimize brief cognitive batteries for brain tumor clinical trials. Journal of Neuro-oncology, 96(2), 271–276.CrossRefPubMedGoogle Scholar
  41. 41.
    Armstrong, C. L., Goldstein, B., Shera, D., Ledakis, G. E., & Tallent, E. M. (2003). The predictive value of longitudinal neuropsychologic assessment in the early detection of brain tumor recurrence. Cancer, 97(3), 649–656.CrossRefPubMedGoogle Scholar
  42. 42.
    Ottensmeier, H., Zimolong, B., Wolff, J. E., Ehrich, J., Galley, N., von Hoff, K., et al. (2015). Neuropsychological short assessment of disease-and treatment-related intelligence deficits in children with brain tumours. European Journal of Paediatric Neurology, 19(3), 298–307.CrossRefPubMedGoogle Scholar
  43. 43.
    Lai, J. S., Zelko, F., Butt, Z., Cella, D., Kieran, M. W., Krull, K. R., et al. (2011). Parent-perceived child cognitive function: Results from a sample drawn from the US general population. Child’s Nervous System, 27(2), 285–293.CrossRefPubMedGoogle Scholar
  44. 44.
    Lai, J.-S., Yount, S., Beaumont, J. L., Cella, D., Toia, J., & Goldman, S. (2015). A patient-centered symptom monitoring and reporting system for children and young adults with cancer (SyMon-SAYS). Pediatric Blood & Cancer, 62(10), 1813–1818.CrossRefGoogle Scholar
  45. 45.
    Anderson, V. A., Spencer-Smith, M. M., Coleman, L., Anderson, P. J., Greenham, M., Jacobs, R., et al. (2014). Predicting neurocognitive and behavioural outcome after early brain insult. Developmental Medicine and Child Neurology, 56(4), 329–336.CrossRefPubMedGoogle Scholar
  46. 46.
    Anderson, V., Catroppa, C., Godfrey, C., & Rosenfeld, J. V. (2011). Intellectual ability 10 years after traumatic brain injury in infancy and childhood: What predicts outcome? Journal of Neurotrauma, 29(1), 143–153.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Jin-Shei Lai
    • 1
    Email author
  • Corey Bregman
    • 2
  • Frank Zelko
    • 3
  • Cindy Nowinski
    • 4
  • David Cella
    • 4
  • Jennifer J. Beaumont
    • 4
  • Stewart Goldman
    • 5
  1. 1.Medical Social Sciences and PediatricsFeinberg School of Medicine at Northwestern UniversityChicagoUSA
  2. 2.Medical Imaging (Radiology)Ann & Robert H. Lurie Children’s HospitalChicagoUSA
  3. 3.Pediatric Neuropsychology Service, Department of Child and Adolescent PsychiatryAnn & Robert H. Lurie Children’s Hospital of ChicagoChicagoUSA
  4. 4.Medical Social SciencesFeinberg School of Medicine at Northwestern UniversityChicagoUSA
  5. 5.Hematology/OncologyAnn & Robert H. Lurie Children’s Hospital of ChicagoChicagoUSA

Personalised recommendations