Quality of Life Research

, Volume 26, Issue 1, pp 85–94 | Cite as

Longitudinal patterns of pain in patients with diffuse and limited systemic sclerosis: integrating medical, psychological, and social characteristics

  • Erin L. Merz
  • Vanessa L. Malcarne
  • Scott C. Roesch
  • Deepthi K. Nair
  • Gloria Salazar
  • Shervin Assassi
  • Maureen D. Mayes



Pain is a common but understudied quality of life concern in systemic sclerosis (SSc). This investigation sought to describe patient-reported pain during the early phase of the disease and to examine potential predictors of this over time.


A prospective cohort (N = 316) of patients with early-disease SSc from the Genetics versus ENvironment In Scleroderma Outcome Study (GENISOS) were followed for 3 years. Multilevel modeling was used to describe longitudinal changes in pain and the extent to which pain variance was explained by disease type, emotional health, perceived physical health, health worry, and social support.


Patient-reported pain remained relatively stable, with slight improvement over time. More severe disease type was associated with worse initial pain, but the association was reduced to nonsignificance after accounting for the psychosocial variables. Better emotional health and perceived physical health were associated with lower initial pain. There were marginal interactive effects for perceived physical health and social support such that initial perceptions of poorer physical health, and higher social support, were predictive of greater improvements in pain over time.


These data suggest that emotional health, perceived physical health, and social support are more relevant to longitudinal SSc pain than disease severity and that perceived physical health and social support may impact pain trajectories. Researchers and rheumatology health professionals should consider these factors in comprehensive pain models and pain management protocols.


Systemic sclerosis Pain Quality of life Multilevel modeling 



Funding was provided by the National Institute of Health (NIH/NIAMS) Center of Research Translation (CORT) in Scleroderma P50AR054144 (PI: Mayes); NIH-KL2RR024149 and K23AR061436 (PI: Assassi).


  1. 1.
    Medsger, T. A. (2003). Natural history of systemic sclerosis and the assessment of disease activity, severity, functional status, and psychologic well-being. Rheumatic Disease Clinics of North America, 29(2), 255–273.CrossRefPubMedGoogle Scholar
  2. 2.
    LeRoy, E. C., Black, C., Fleischmajer, R., Jablonska, S., Krieg, T., Medsger, T. A., et al. (1988). Scleroderma (systemic sclerosis): Classification, subsets and pathogenesis. The Journal of Rheumatology, 15(2), 202–205.PubMedGoogle Scholar
  3. 3.
    Patterson, K. A., Roberts-Thomson, P. J., Lester, S., Tan, J. A., Hakendorf, P., Rischmueller, M., et al. (2015). Interpretation of an extended autoantibody profile in a well-characterized Australian systemic sclerosis (scleroderma) cohort using principal components analysis. Arthritis and Rheumatology, 67(12), 3234–3244.CrossRefPubMedGoogle Scholar
  4. 4.
    Benrud-Larson, L. M., Haythornthwaite, J. A., Heinberg, L. J., Boling, C., Reed, J., White, B., et al. (2002). The impact of pain and symptoms of depression in scleroderma. Pain, 95(3), 267–275.CrossRefPubMedGoogle Scholar
  5. 5.
    Carreira, P. E. (2006). “Quality of pain” in systemic sclerosis. Rheumatology, 45(10), 1185–1186.CrossRefPubMedGoogle Scholar
  6. 6.
    Richards, H., Herrick, A., Griffin, K., Gwilliam, P., & Fortune, D. (2004). Psychological adjustment to systemic sclerosis—exploring the association of disease factors, functional ability, body related attitudes and fear of negative evaluation. Psychology, Health and Medicine, 9(1), 29–39.CrossRefGoogle Scholar
  7. 7.
    Edwards, R. R., Goble, L., Kwan, A., Kudel, I., McGuire, L., Heinberg, L., et al. (2006). Catastrophizing, pain, and social adjustment in scleroderma: Relationships with educational level. The Clinical Journal of Pain, 22(7), 639–646.CrossRefPubMedGoogle Scholar
  8. 8.
    Schieir, O., Thombs, B. D., Hudson, M., Boivin, J.-F., Steele, R., Bernatsky, S., et al. (2010). Prevalence, severity, and clinical correlates of pain in patients with systemic sclerosis. Arthritis Care and Research, 62(3), 409–417.CrossRefPubMedGoogle Scholar
  9. 9.
    Stisi, S., Sarzi-Puttini, P., Benucci, M., Biasi, G., Bellissimo, S., Talotta, R., et al. (2014). Pain in systemic sclerosis. Reumatismo, 66(1), 44–47.CrossRefPubMedGoogle Scholar
  10. 10.
    Suarez-Almazor, M. E., Kallen, M. A., Roundtree, A. K., & Mayes, M. (2007). Disease and symptom burden in systemic sclerosis: A patient perspective. The Journal of Rheumatology, 34(8), 1718–1726.PubMedGoogle Scholar
  11. 11.
    Johnson, S. R., Glaman, D. D., Schentag, C. T., & Lee, P. (2006). Quality of life and functional status in systemic sclerosis compared to other rheumatic diseases. The Journal of Rheumatology, 33(6), 1117–1122.PubMedGoogle Scholar
  12. 12.
    Malcarne, V. L., Hansdottir, I., McKinney, A., Upchurch, R., Greenbergs, H. L., Henstorf, G. H., et al. (2007). Medical signs and symptoms associated with disability, pain, and psychosocial adjustment in systemic sclerosis. The Journal of Rheumatology, 34(2), 359–367.PubMedGoogle Scholar
  13. 13.
    Toffolo, S. R., Furtado, R. N. V., Klein, A., Watanabe, S., Andrade, L. E. C., & Natour, J. (2008). Measurement of upper limb ulcers in patients with systemic sclerosis: Reproducibility and correlation with pain, function, and quality of life. Nursing Research, 57(2), 84–92.CrossRefPubMedGoogle Scholar
  14. 14.
    Del Rosso, A., Boldrini, M., D’Agostino, D., Placidi, G. P., Scarpato, A., Pignone, A., et al. (2004). Health-related quality of life in systemic sclerosis as measured by the Short Form 36: relationship with clinical and biologic markers. Arthritis and Rheumatism, 51(3), 475–481.CrossRefPubMedGoogle Scholar
  15. 15.
    Fava, G. A., & Sonino, N. (2008). The biopsychosocial model thirty years later. Psychotherapy and Psychosomatics, 77(1), 1–2.CrossRefPubMedGoogle Scholar
  16. 16.
    Gatchel, R. J., Peng, Y. B., Peters, M. L., Fuchs, P. N., & Turk, D. C. (2007). The biopsychosocial approach to chronic pain: Scientific advances and future directions. Psychological Bulletin, 133(4), 581–624.CrossRefPubMedGoogle Scholar
  17. 17.
    Kwakkenbos, L., van Lankveld, W. G. J. M., Vonk, M. C., Becker, E. S., van den Hoogen, F. H. J., & van den Ende, C. H. M. (2012). Disease-related and psychosocial factors associated with depressive symptoms in patients with systemic sclerosis, including fear of progression and appearance self-esteem. Journal of Psychosomatic Research, 72(3), 199–204.CrossRefPubMedGoogle Scholar
  18. 18.
    Richards, H. L., Herrick, A. L., Griffin, K., Gwilliam, P. D. H., Loukes, J., & Fortune, D. G. (2003). Systemic sclerosis: Patients’ perceptions of their condition. Arthritis and Rheumatism, 49(5), 689–696.CrossRefPubMedGoogle Scholar
  19. 19.
    van Lankveld, W., Teunissen, H., Näring, G., Vonk, M., & van den Hoogen, F. (2007). Social Support, disease-related cognitions and coping as predictors of depressed mood in systemic sclerosis. Cognitive Therapy and Research, 32(3), 434–447.CrossRefGoogle Scholar
  20. 20.
    Merz, E. L., Malcarne, V. L., Assassi, S., Nair, D. K., Graham, T. A., Yellman, B. P., et al. (2014). Biopsychosocial typologies of pain in a cohort of patients with systemic sclerosis. Arthritis Care and Research, 66(4), 567–574.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Savelkoul, M., Post, M. W., de Witte, L. P., & van den Borne, H. B. (2000). Social support, coping and subjective well-being in patients with rheumatic diseases. Patient Education and Counseling, 39(2–3), 205–218.CrossRefPubMedGoogle Scholar
  22. 22.
    Sekhon, S., Pope, J., & Baron, M. (2010). The minimally important difference in clinical practice for patient-centered outcomes including health assessment questionnaire, fatigue, pain, sleep, global visual analog scale, and SF-36 in scleroderma. The Journal of Rheumatology, 37(3), 591–598.CrossRefPubMedGoogle Scholar
  23. 23.
    Reveille, J. D., Fischbach, M., McNearney, T., Friedman, A. W., Aguilar, M. B., Lisse, J., et al. (2001). Systemic sclerosis in 3 US ethnic groups: A comparison of clinical, sociodemographic, serologic, and immunogenetic determinants. Seminars in Arthritis and Rheumatism, 30(5), 332–346.CrossRefPubMedGoogle Scholar
  24. 24.
    Kahaleh, M. B., Sultany, G. L., Smith, E. A., Huffstutter, J. E., Loadholt, C. B., & LeRoy, E. C. (1986). A modified scleroderma skin scoring method. Clinical and Experimental Rheumatology, 4(4), 367–369.PubMedGoogle Scholar
  25. 25.
    Ware, J. E., & Sherbourne, C. D. (1992). The MOS 36-item short-form health survey (SF-36): I. Conceptual framework and item selection. Medical Care, 30(6), 473–483.CrossRefPubMedGoogle Scholar
  26. 26.
    Pilowsky, I., & Spence, N. D. (1975). Patterns of illness behaviour in patients with intractable pain. Journal of Psychosomatic Research, 19(4), 279–287.CrossRefPubMedGoogle Scholar
  27. 27.
    Merz, E. L., Malcarne, V. L., Roesch, S. C., Sharif, R., Harper, B. E., Draeger, H. T., et al. (2013). Measuring illness behavior in patients with systemic sclerosis. Arthritis Care and Research, 65(4), 585–593.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cohen, S., Mermelstein, R., Kamarck, T., & Hoberman, H. M. (1985). Measuring the functional components of social support. In I. G. Sarason & B. R. Sarason (Eds.), Social support: Theory, research and applications (pp. 73–94). Dordrecht: Springer, Netherlands.CrossRefGoogle Scholar
  29. 29.
    Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods (2nd ed.). Thousand Oaks: Sage.Google Scholar
  30. 30.
    Mehta, P. D., & West, S. G. (2000). Putting the individual back into individual growth curves. Psychological Methods, 5(1), 23–43.CrossRefPubMedGoogle Scholar
  31. 31.
    Preacher, K. J., Curran, P. J., & Bauer, D. J. (2006). Computational tools for probing interactions in multiple linear regression, multilevel modeling, and latent curve analysis. Journal of Educational and Behavioral Statistics, 31(4), 437–448.CrossRefGoogle Scholar
  32. 32.
    Zhang, J. L., & Rubin, D. B. (2003). Estimation of causal effects via principal stratification when some outcomes are truncated by “death”. Journal of Educational and Behavioral Statistics, 28(4), 353–368.CrossRefGoogle Scholar
  33. 33.
    Kurland, B. F., Johnson, L. L., Egleston, B. L., & Diehr, P. H. (2009). Longitudinal data with follow-up truncated by death: Match the analysis method to research aims. Statistical Science, 24(2), 211.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hedeker, D., & Gibbons, R. D. (1997). Application of random-effects pattern-mixture models for missing data in longitudinal studies. Psychological Methods, 2(1), 64–78.CrossRefGoogle Scholar
  35. 35.
    Schwartz, C. E., Andresen, E. M., Nosek, M. A., & Krahn, G. L. (2007). Response shift theory: Important implications for measuring quality of life in people with disability. Archives of Physical Medicine and Rehabilitation, 88(4), 529–536.CrossRefPubMedGoogle Scholar
  36. 36.
    Verdam, M. G. E., Oort, F. J., & Sprangers, M. A. G. (2016). Using structural equation modeling to detect response shifts and true change in discrete variables: An application to the items of the SF-36. Quality of Life Research, 25(6), 1361–1383.CrossRefPubMedGoogle Scholar
  37. 37.
    Visser, M. R. M., Oort, F. J., Van Lanschot, J. J. B., Van Der Velden, J., Kloek, J. J., Gouma, D. J., et al. (2013). The role of recalibration response shift in explaining bodily pain in cancer patients undergoing invasive surgery: An empirical investigation of the Sprangers and Schwartz model. Psycho-Oncology, 22(3), 515–522.CrossRefPubMedGoogle Scholar
  38. 38.
    Georges, C., Chassany, O., Toledano, C., Mouthon, L., Tiev, K., Meyer, O., et al. (2006). Impact of pain in health related quality of life of patients with systemic sclerosis. Rheumatology, 45(10), 1298–1302.CrossRefPubMedGoogle Scholar
  39. 39.
    Ehde, D. M., Dillworth, T. M., & Turner, J. A. (2014). Cognitive-behavioral therapy for individuals with chronic pain: Efficacy, innovations, and directions for research. American Psychologist, 69(3), 22–29.Google Scholar
  40. 40.
    McCracken, L. M., & Vowles, K. E. (2014). Acceptance and commitment therapy and mindfulness for chronic pain: model, process, and progress. American Psychologist, 69(2), 178–187.CrossRefPubMedGoogle Scholar
  41. 41.
    Sterba, S. K. (2014). Fitting nonlinear latent growth curve models with individually varying time points. Structural Equation Modeling, 21, 630–647.CrossRefGoogle Scholar
  42. 42.
    Shiffman, S., Stone, A. A., & Hufford, M. R. (2008). Ecological momentary assessment. Annual Review of Clinical Psychology, 4, 1–32.CrossRefPubMedGoogle Scholar
  43. 43.
    Edwards, R. R., Cahalan, C., Calahan, C., Mensing, G., Smith, M., & Haythornthwaite, J. A. (2011). Pain, catastrophizing, and depression in the rheumatic diseases. Nature Reviews Rheumatology, 7(4), 216–224.CrossRefPubMedGoogle Scholar
  44. 44.
    Redelmeier, D. A., Katz, J., & Kahneman, D. (2003). Memories of colonoscopy: A randomized trial. Pain, 104(1–2), 187–194.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Erin L. Merz
    • 1
  • Vanessa L. Malcarne
    • 2
  • Scott C. Roesch
    • 2
  • Deepthi K. Nair
    • 3
  • Gloria Salazar
    • 3
  • Shervin Assassi
    • 3
  • Maureen D. Mayes
    • 3
  1. 1.Department of PsychologyCalifornia State University, Dominguez HillsCarsonUSA
  2. 2.Department of PsychologySan Diego State UniversitySan DiegoUSA
  3. 3.Division of RheumatologyUniversity of Texas Health Science Center at HoustonHoustonUSA

Personalised recommendations