Quality of Life Research

, Volume 25, Issue 3, pp 625–636 | Cite as

QLU-C10D: a health state classification system for a multi-attribute utility measure based on the EORTC QLQ-C30

  • M. T. King
  • D. S. J. Costa
  • N. K. Aaronson
  • J. E. Brazier
  • D. F. Cella
  • P. M. Fayers
  • P. Grimison
  • M. Janda
  • G. Kemmler
  • R. Norman
  • A. S. Pickard
  • D. Rowen
  • G. Velikova
  • T. A. Young
  • R. Viney



To derive a health state classification system (HSCS) from the cancer-specific quality of life questionnaire, the EORTC QLQ-C30, as the basis for a multi-attribute utility instrument.


The conceptual model for the HSCS was based on the established domain structure of the QLQ-C30. Several criteria were considered to select a subset of dimensions and items for the HSCS. Expert opinion and patient input informed a priori selection of key dimensions. Psychometric criteria were assessed via secondary analysis of a pooled dataset comprising HRQOL and clinical data from 2616 patients from eight countries and a range of primary cancer sites, disease stages, and treatments. We used confirmatory factor analysis (CFA) to assess the conceptual model’s robustness and generalisability. We assessed item floor effects (>75 % observations at lowest score), disordered item response thresholds, coverage of the latent variable and differential item function using Rasch analysis. We calculated effect sizes for known group comparisons based on disease stage and responsiveness to change. Seventy-nine cancer patients assessed the relative importance of items within dimensions.


CFA supported the conceptual model and its generalisability across primary cancer sites. After considering all criteria, 12 items were selected representing 10 dimensions: physical functioning (mobility), role functioning, social functioning, emotional functioning, pain, fatigue, sleep, appetite, nausea, bowel problems.


The HSCS created from QLQ-C30 items is known as the EORTC Quality of Life Utility Measure-Core 10 dimensions (QLU-C10D). The next phase of the QLU-C10D’s development involves valuation studies, currently planned or being conducted across the globe.


Quality of life Utility QLQ-C30 Multi-attribute utility instrument Cancer 



The MAUCa Consortium, in addition to those named as authors, consists of the following members, all of whom made some contribution to the research reported in this paper: Stuart Peacock, Helen McTaggart-Cowan, Julie Pallant and Deborah Street. We would also like to thank the following people for their generosity in contributing data for secondary analysis: U. Abacioğlu, J. Arraras, J. Blazeby, W.-C. Chie, S. Clarke, S. Kaasa, P. Klepstad, Millennium Pharmaceuticals, K. Mystakidou, S. Peacock, R. Schwarz, N. Scott, N. Tebbutt, G. Velikova and the Australian Gastro-Intestinal Trials Group. This research was supported by a National Health and Medical Research Council (Australia) Project Grant (632662). A/Professor Janda was supported by a NHMRC career development award 1045247. Professor King was supported by the Australian Government through Cancer Australia.


This research was supported by a National Health and Medical Research Council (Australia) Project Grant (632662). Professor King was supported by the Australian Government through Cancer Australia. Dr. Norman was supported by a NHMRC early career research fellowship (1069732).

Compliance with ethical standards

Conflict of interest

The authors declare they do not have conflicts of interest.

Ethical approval

The study was approved by the University of Sydney Human Research Ethics Committee, approval number 2012/2444. All study procedures involving human participants were in accordance with the ethical standards of institutional and national research committees and with the 1964 Helsinki Declaration and its later amendments and comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11136_2015_1217_MOESM1_ESM.docx (108 kb)
Supplementary material 1 (DOCX 108 kb)


  1. 1.
    Aaronson, N. K., Bullinger, M., & Ahmedzai, S. (1988). A modular approach to quality of life assessment in cancer clinical trials. Recent Results in Cancer Research, 111, 231–249.CrossRefPubMedGoogle Scholar
  2. 2.
    Aaronson, N. K., Ahmedzai, S., Bergman, B., Bullinger, M., Cull, A., Duez, N. J., et al. (1993). The European Organisation for Research and Treatment of Cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology. Journal of the National Cancer Institute, 85(5), 365–376.CrossRefPubMedGoogle Scholar
  3. 3.
    Fayers, P. M., Aaronson, N. K., Bjordal, K., Groenvold, M., Curran, D., Bottomley, A., on behalf of the EORTC Quality of Life Group. (2001). The EORTC QLQ-C30 scoring manual (3rd ed.). Brussels: European Organisation for Research and Treatment of Cancer (EORTC).Google Scholar
  4. 4.
    Drummond, M. F., Sculpher, M. J., Torrance, G. W., O’Brien, B. J., & Stoddart, G. L. (2005). Methods for the economic evaluation of health care programmes (3rd ed.). Oxford: Oxford University Press.Google Scholar
  5. 5.
    National Institute for Health and Clinical Excellence. (2013). Guide to the methods of technology appraisal. London: NICE.Google Scholar
  6. 6.
    Mittmann, N., Evans, W. K., Rocchi, A., Longo, C. J., Au, H.-J., Husereau, D., et al. (2009). Addendum to CADTH’s guidelines for the economic evaluation of health technologies: Specific guidance for oncology products. Ottawa: Canadian Agency for Drugs and Technologies in Health. Google Scholar
  7. 7.
    Mitchell, A. S., & Viney, R. (2010). Meeting the information needs of a national drug payer: Aspirations of the guidelines from Australia. Drug Development Research, 71(8), 463–469.CrossRefGoogle Scholar
  8. 8.
    Scuffham, P. A., Whitty, J. A., Mitchell, A., & Viney, R. (2008). The use of QALY weights for QALY calculations: A review of industry submissions requesting listing on the Australian Pharmaceutical Benefits Scheme 2002–4. Pharmacoeconomics, 26(4), 297–310.CrossRefPubMedGoogle Scholar
  9. 9.
    Neumann, P. J., Goldie, S. J., & Weinstein, M. C. (2000). Preference-based measures in economic evaluation in health care. Annual Review of Public Health, 21, 587–611.CrossRefPubMedGoogle Scholar
  10. 10.
    Brazier, J., Roberts, J., & Deverill, M. T. (2002). The estimation of a preference-based measure of health from the SF-36. Journal of Health Economics, 21(2), 271–292.CrossRefPubMedGoogle Scholar
  11. 11.
    Viney, R., Norman, R., King, M. T., Cronin, P., Street, D. J., Knox, S., & Ratcliffe, J. (2014). Time trade-off derived EQ-5D weights for Australia. Value in Health, 14(6), 928–936.CrossRefGoogle Scholar
  12. 12.
    Norman, R., Viney, R., Brazier, J., Burgess, L., Cronin, P., King, M., et al. (2014). Valuing SF-6D health states using a discrete choice experiment. Medical Decision Making, 34(6), 773–786.CrossRefGoogle Scholar
  13. 13.
    Viney, R., Norman, R., Brazier, J., Cronin, P., King, M. T., Ratcliffe, J., & Street, D. (2014). An Australian discrete choice experiment to value EQ-5D health states. Health Economics, 23(6), 729–742.CrossRefPubMedGoogle Scholar
  14. 14.
    Brazier, J., Czoski-Murray, C., Roberts, J., Brown, M., Symonds, T., & Kelleher, C. (2008). Estimation of a preference-based index from a condition-specific measure: The King’s Health Questionnaire. Medical Decision Making, 28(1), 113–126.CrossRefPubMedGoogle Scholar
  15. 15.
    Brazier, J., Usherwood, T., Harper, R., & Thomas, K. (1998). Deriving a preference-based single index from the UK SF-36 Health Survey. Journal of Clinical Epidemiology, 51(11), 1115–1128.CrossRefPubMedGoogle Scholar
  16. 16.
    Young, T. A., Yang, Y., Brazier, J. E., & Tsuchiya, A. (2011). The use of Rasch analysis in reducing a large condition-specific instrument for preference valuation: The case of moving from AQLQ to AQL-5D. Medical Decision Making, 31(1), 195–210.CrossRefPubMedGoogle Scholar
  17. 17.
    Young, T. A., Yang, Y., Brazier, J. E., Tsuchiya, A., & Coyne, K. (2009). The first stage of developing preference-based measures: Constructing a health-state classification using Rasch analysis. Quality of Life Research, 18(2), 253–265.CrossRefPubMedGoogle Scholar
  18. 18.
    Norman, R., Viney, R., Aaronson, N. K., Brazier, J. E., Cella, D. F., Costa, D. S. J., et al. (2015). Using a discrete choice experiment to value the QLU-C10D: Feasibility and sensitivity to presentation format. Quality of Life Research. doi: 10.1007/s11136-015-1115-3
  19. 19.
    Pickard, A. S., Shaw, J. W., Lin, H. W., Trask, P. C., Aaronson, N., Lee, T. A., & Cella, D. (2009). A patient-based utility measure of health for clinical trials of cancer therapy based on the European Organization for the Research and Treatment of Cancer Quality of Life Questionnaire. Value in Health, 12(6), 977–988.CrossRefPubMedGoogle Scholar
  20. 20.
    Bjordal, K., de Graef, A., Fayers, P. M., Hammerlid, E., van Pottelsberghe, C., Curran, D., et al. (2000). A 12 country field study of the EORTC QLQ-C30 (version 3.0) and the head and neck cancer specific module (EORTC QLQ-H&N35) in head and neck patients. European Journal of Cancer, 36(14), 1796–1807.CrossRefPubMedGoogle Scholar
  21. 21.
    Costa, D. S. J., Aaronson, N. K., Fayers, P. M., Grimison, P., Janda, M., Pallant, J. F., et al. (2014). Deriving a preference-based utility measure for cancer patients from the EORTC QLQ-C30: A confirmatory versus exploratory approach. Patient Related Outcome Measures, 5, 119–129.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Costa, D. S. J., Aaronson, N. K., Fayers, P. M., Pallant, J. F., Velikova, G., & King, M. T. (2015). Testing the measurement invariance of the EORTC QLQ-C30 across primary cancer sites using multi-group confirmatory factor analysis. Quality of Life Research, 24(1), 125–133.CrossRefPubMedGoogle Scholar
  23. 23.
    Pallant, J. F., & Tennant, A. (2007). An introduction to the Rasch measurement model: An example using the Hospital Anxiety and Depression Scale (HADS). British Journal of Clinical Psychology, 46, 1–18.CrossRefPubMedGoogle Scholar
  24. 24.
    Revicki, D., Hays, R. D., Cella, D., Sloan, J., Revicki, D., Hays, R. D., et al. (2008). Recommended methods for determining responsiveness and minimally important differences for patient-reported outcomes. Journal of Clinical Epidemiology, 61(2), 102–109.CrossRefPubMedGoogle Scholar
  25. 25.
    Kazis, L. E., Anderson, J. J., & Meenan, R. F. (1989). Effect sizes for interpreting changes in health status. Medical Care, 27(3 Suppl), S178–S189.CrossRefPubMedGoogle Scholar
  26. 26.
    Costa, D. S. J., King, M. T., Aaronson, N. K., Brazier, J. E., Cella, D., Grimison, P., et al. (2014). Do cancer patients distinguish between the importance and severity of their quality of life concerns? Quality of Life Research, 23(1 Supplement), 122.Google Scholar
  27. 27.
    Arraras, J. I., Suárez, J., Arias de la Vega, F., Vera, R., Asín, G., Arrazubi, V., et al. (2011). The EORTC Quality of Life questionnaire for patients with colorectal cancer: EORTC QLQ-CR29 validation study for Spanish patients. Clinical and Translational Oncology, 13(1), 50–56.CrossRefPubMedGoogle Scholar
  28. 28.
    Arraras, J. I., Tejedor, M., Illaramendi, J. J., Vera, R., Pruja, E., Marcos, M., et al. (2001). El cuestionario de calidad de vida para cáncer de mama de la EORTC, QLQ-BR23: Estudio psicométrico con una muestra española. Psicologia Conductual, 9, 81–97.Google Scholar
  29. 29.
    Arraras Urdaniz, J. I., Villafranca Iturre, E., Arias de la Vega, F., Domínguez Domínguez, M. A., Lainez Milagro, N., Manterola Burgaleta, A., et al. (2008). The EORTC Quality of Life Questionnaire QLQ-C30 (version 3.0). Validation study for Spanish prostate cancer patients. Archivos Españoles de Urología, 61(8), 949–954.PubMedGoogle Scholar
  30. 30.
    Cengiz, M., Ozyar, E., Esassolak, M., Altun, M., Akmansu, M., Sen, M., et al. (2005). Assessment of quality of life of nasopharyngeal carcinoma patients with EORTC QLQ-C30 and H&N-35 modules. International Journal of Radiation Oncology Biology Physics, 63(5), 1347–1353.CrossRefGoogle Scholar
  31. 31.
    Chie, W., Chang, K., Huang, C., & Kuo, W. (2003). Quality of life of breast cancer patients in Taiwan: Validation of the Taiwan Chinese version of the EORTC QLQ-C30 and EORTC QLQ-BR23. Psycho-Oncology, 12, 729–735.CrossRefPubMedGoogle Scholar
  32. 32.
    Clarke, S. J., Yip, S., Brown, C., van Hazel, G. A., Ransom, D. T., Goldstein, D., et al. (2011). Single-agent irinotecan or FOLFIRI as second-line chemotherapy for advanced colorectal cancer; results of a randomised phase II study (DaVINCI) and meta-analysis. European Journal of Cancer, 47(12), 1826–1836.CrossRefPubMedGoogle Scholar
  33. 33.
    Kaasa, S., Brenne, E., Lund, J. A., Fayers, P., Falkmer, U., Holmberg, M., et al. (2006). Prospective randomised multicenter trial on single fraction radiotherapy (8Gy x1) versus multiple fractions (3Gy x10) in the treatment of painful bone metastases. Radiotherapy and Oncology, 29, 278–284.CrossRefGoogle Scholar
  34. 34.
    Mystakidou, K., Tsilika, E., Parpa, E., Kalaidopoulou, O., Smyrniotis, V., & Vlahos, L. (2001). The EORTC core quality of life questionnaire (QLQ-C30, version 3.0) in terminally ill cancer patients under palliative care: Validity and reliability in a Hellenic sample. Internation Journal of Cancer, 94(1), 135–139.CrossRefGoogle Scholar
  35. 35.
    Richardson, P. G., Barlogie, B., Berenson, J., Singhal, S., Jagannath, S., Irwin, D., et al. (2003). A phase 2 study of Bortezomib in relapsed, refractory myeloma. New England Journal of Medicine, 348, 2609–2617.CrossRefPubMedGoogle Scholar
  36. 36.
    Singer, S., Wollbrück, D., Wulke, C., Dietz, A., Klemm, E., Oeken, J., et al. (2009). Validation of the EORTC QLQ-C30 and EORTC QLQ-H&N35 in patients with laryngeal cancer after surgery. Head and Neck, 31(1), 64–76.CrossRefPubMedGoogle Scholar
  37. 37.
    Smith, A. B., King, M. T., Butow, P., Luckett, T., Grimison, P., Toner, G. C., et al. (2013). The prevalence and correlates of supportive care needs in testicular cancer survivors: A cross-sectional study. Psycho-Oncology, 22(11), 2557–2564.CrossRefPubMedGoogle Scholar
  38. 38.
    Tebbutt, N. C., Cummins, M. M., Sourjina, T., Strickland, A. H., Van Hazel, G., Ganju, V., et al. (2010). Randomised, non-comparative phase II study of weekly docetaxel with cisplatin and 5-fluorouracil or with capecitabine in oesophagogastric cancer: The AGITG ATTAX trial. British Journal of Cancer, 102(3), 475–481.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tebbutt, N. C., Parry, M. M., Zannino, D., Strickland, A. H., Van Hazel, G. A., Pavlakis, N., et al. (2013). Docetaxel plus cetuximab as second-line treatment for docetaxel-refractory oesophagogastric cancer: The AGITG ATTAX2 trial. British Journal of Cancer, 108(4), 771–774.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Teckle, P., Peacock, S., McTaggart-Cowan, H., van der Hoek, K., Chia, S., Melosky, B., & Gelmon, K. (2011). The ability of cancer-specific and generic preference-based instruments to discriminate across clinical and self-reported measures of cancer severities. Health and Quality of Life Outcomes, 9, 106.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Velikova, G., Booth, L., Smith, A. B., Brown, P. M., Lynch, P., Brown, J., & Selby, P. J. (2004). Measuring quality of life in routine oncology practice improves communication and patient well-being: A randomized controlled trial. Journal of Clinical Oncology, 22(4), 714–724.CrossRefPubMedGoogle Scholar
  42. 42.
    Velikova, G., Sheppard, S., Campbell, L., Smith, A., Awad, N., Selby, P., et al. (2008). Randomized trial of quality-of-life measurement in oncology practice: Do oncologists need to know? ASCO annual meeting (Vol. 26, pp. 9586). Chicago: Journal of Clinical Oncology.Google Scholar
  43. 43.
    Whistance, R. N., Conroy, T., Chie, W., Costantini, A., Sezer, O., Koller, M., et al. (2009). Clinical and psychometric validation of the EORTC QLQ-CR29 questionnaire module to assess health-related quality of life in patients with colorectal cancer. European Journal of Cancer, 45(17), 3017–3026.CrossRefPubMedGoogle Scholar
  44. 44.
    Klepstad, P., Dale, O., Kaasa, S., Zahlsen, K., Aamo, T., Fayers, P., & Borchgrevink, P. C. (2003). Influences on serum concentrations of morphine, M6G and M3G during routine clinical drug monitoring: A prospective survey in 300 adult cancer patients. Acta Anaesthesiologica Scandinavica, 47, 725–731.CrossRefPubMedGoogle Scholar
  45. 45.
    Sintonen, H. (2001). The 15D instrument of health-related quality of life: Properties and applications. Annals of Medicine, 33, 328–336.CrossRefPubMedGoogle Scholar
  46. 46.
    Rowen, D., Brazier, J. E., Young, T., Gaugris, S., Craig, B. M., King, M. T., & Velikova, G. (2011). Deriving a preference-based measure for cancer using the EORTC-QLQC30. Value in Health, 14(5), 721–731.CrossRefPubMedGoogle Scholar
  47. 47.
    Costa, D. S., Aaronson, N. K., Fayers, P. M., Grimison, P., Janda, M., Pallant, J. F., et al. (2014). Deriving a preference-based utility measure for cancer patients from the EORTC QLQ-C30: A confirmatory versus exploratory approach. Patient Related Outcome Measures, 5, 119–129. CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Costa, D. S. J., King, M. T., Aaronson, N. K., Brazier, J. E., Cella, D., Grimison, P., et al. (2014). Do cancer patients distinguish between the importance and severity of their quality of life concerns? Annual Conference for the international society for quality of life research (Vol. 23, pp. 122). Berlin, Germany: Quality of Life Research.Google Scholar
  49. 49.
    McTaggart-Cowan, H., Teckle, P., & Peacock, S. (2013). Mapping utilities from cancer-specific health-related quality of life instruments: A review of the literature. Expert Review of Pharmacoeconomics & Outcomes Research, 13(6), 753–765.CrossRefGoogle Scholar
  50. 50.
    Fayers, P. M., & Hays, R. D. (2014). Should linking replace regression when mapping from profile-based measures to preference-based measures? Value in Health, 17, 261–265.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Brazier, J. E., Yang, Y., Tsuchiya, A., & Rowen, D. L. (2010). A review of studies mapping (or cross walking) non preference based measures of health to generic preference-based measures. The European Journal of Health Economics, 11, 215–225.CrossRefPubMedGoogle Scholar
  52. 52.
    Scott, N. W., Fayers, P., Aaronson, N., Bottomley, A., de Graeff, A., Groenvold, M., et al. (2008). EORTC QLQ-C30 Reference Values. Brussels: European Organisation for Research and Treatment of Cancer (EORTC).Google Scholar
  53. 53.
    Jim, H. S. L., Phillips, K. M., Chait, S., Faul, L. A., Popa, M. A., Lee, Y. H., et al. (2012). Meta-analysis of cognitive functioning in breast cancer survivors previously treated with standard-dose chemotherapy. Journal of Clinical Oncology, 30(29), 3578–3587.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Park, J. H., & Bae, S. H. (2012). A meta-analysis of chemotherapy related cognitive impairment in patients with breast cancer. Journal of Korean Academy of Nursing, 42(5), 644–658.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • M. T. King
    • 1
    • 2
  • D. S. J. Costa
    • 1
  • N. K. Aaronson
    • 3
  • J. E. Brazier
    • 4
  • D. F. Cella
    • 5
  • P. M. Fayers
    • 6
    • 7
  • P. Grimison
    • 8
  • M. Janda
    • 9
  • G. Kemmler
    • 10
  • R. Norman
    • 11
    • 12
  • A. S. Pickard
    • 13
  • D. Rowen
    • 4
  • G. Velikova
    • 14
  • T. A. Young
    • 4
  • R. Viney
    • 12
  1. 1.Psycho-Oncology Cooperative Research Group (PoCoG), School of Psychology, Faculty of ScienceUniversity of SydneySydneyAustralia
  2. 2.Central Clinical School, Sydney Medical School, Faculty of MedicineUniversity of SydneySydneyAustralia
  3. 3.Division of Psychosocial Research & EpidemiologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
  4. 4.Health Economics and Decision Science, School of Health and Related ResearchUniversity of SheffieldSheffieldUK
  5. 5.Department of Medical Social Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoUSA
  6. 6.Institute of Applied Health SciencesUniversity of AberdeenAberdeenUK
  7. 7.Department of Cancer Research and Molecular MedicineNorwegian University of Science and Technology (NTNU)TrondheimNorway
  8. 8.Chris O’Brien Lifehouse, Sydney Medical SchoolUniversity of SydneySydneyAustralia
  9. 9.School of Public Health, Institute of Health and Biomedical InnovationQueensland University of TechnologyBrisbaneAustralia
  10. 10.Department of Psychiatry and PsychotherapyInnsbruck Medical UniversityInnsbruckAustria
  11. 11.School of Public HealthCurtin UniversityPerthAustralia
  12. 12.Centre for Health Economics Research and Evaluation (CHERE)University of Technology Sydney (UTS)SydneyAustralia
  13. 13.Department of Pharmacy Systems, Outcomes and Policy, College of PharmacyUniversity of Illinois at ChicagoChicagoUSA
  14. 14.Leeds Institute of Cancer and PathologyUniversity of Leeds, St James’s University HospitalLeedsUK

Personalised recommendations