Quality of Life Research

, Volume 24, Issue 8, pp 1829–1834 | Cite as

Assessing measurement invariance of three depression scales between neurologic samples and community samples

  • Hyewon ChungEmail author
  • Jiseon Kim
  • Robert L. Askew
  • Salene M. W. Jones
  • Karon F. Cook
  • Dagmar Amtmann
Brief Communication



Measurement invariance is necessary for meaningful group comparisons. The purpose of this study was to test measurement invariance of three patient-reported measures of depressive symptoms between neurologic and community samples.


The instruments tested included the center for epidemiologic studies depression scale (CESD-20), the patient health questionnaire-9 (PHQ-9), and the patient-reported outcome measurement information system depression short form (PROMIS-D-8). Responses from a community sample were compared to responses from samples with two neurologic conditions: multiple sclerosis and spinal cord injury. Multi-group confirmatory factor analysis was used to evaluate successive levels of measurement invariance: (a) configural invariance, i.e., equivalent item factor structure between groups; (b) metric invariance, i.e., equivalent unstandardized factor loadings between groups; and (c) scalar invariance, i.e., equivalent item intercepts between groups.


Results of this study supported metric invariance for the CESD-20, PHQ-9, and PROMIS-D-8 scores between the community sample and the samples with neurologic conditions. The most rigorous form of invariance (i.e., scalar) also holds for the CESD-20 and the PROMIS-D-8.


The current study suggests that depressive symptoms as measured by three different outcome measures have the same meaning across clinical and community samples. Thus, the use of these measures for group comparisons is supported.


Measurement invariance Multi-group confirmatory factor analysis Depression 



Center for epidemiologic studies depression scale


Confirmatory factor analysis


Differential item functioning


Multi-group confirmatory factor analysis


Multiple sclerosis


Patient health questionnaire


Patient-reported outcome measurement information system


Spinal cord injury



Research reported in this paper was supported by the Agency for Healthcare Research and Quality (AHRQ) under award number R03HS020700. The content is solely the responsibility of the authors and does not necessarily represent the official views of the AHRQ.


  1. 1.
    Cole, J. C., Rabin, A. S., Smith, T. L., & Kaufman, A. S. (2004). Development and validation of a Rasch-derived CES-D short form. Psychological Assessment, 16(4), 360–372. doi: 10.1037/1040-3590.16.4.360.PubMedCrossRefGoogle Scholar
  2. 2.
    Kroenke, K., Spitzer, R. L., Williams, J. B., & Löwe, B. (2010). The patient health questionnaire somatic, anxiety, and depressive symptom scales: a systematic review. General Hospital Psychiatry, 32(4), 345–359. doi: 10.1016/j.genhosppsych.2010.03.006.PubMedCrossRefGoogle Scholar
  3. 3.
    Radloff, L. S. (1977). The CES-D scale a self-report depression scale for research in the general population. Applied Psychological Measurement, 1(3), 385–401. doi: 10.1177/014662167700100306.CrossRefGoogle Scholar
  4. 4.
    Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9(2), 233–255. doi: 10.1207/S15328007SEM0902_5.CrossRefGoogle Scholar
  5. 5.
    King-Kallimanis, B. L., ter Hoeven, C. L., de Haes, H. C., Smets, E. M., Koning, C. C., & Oort, F. J. (2012). Assessing measurement invariance of a health-related quality-of-life questionnaire in radiotherapy patients. Quality of Life Research, 21(10), 1745–1753. doi: 10.1007/s11136-011-0094-2.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Millsap, R. E. (2012). Statistical approaches to measurement invariance. New York: Routledge.Google Scholar
  7. 7.
    Spitzer, R. L., Kroenke, K., Williams, J. B., & Patient Health Questionnaire Primary Care Study Group. (1999). Validation and utility of a self-report version of PRIME-MD: The PHQ primary care study. The Journal of the American Medical Association, 282(18), 1737–1744. doi: 10.1001/jama.282.18.1737.CrossRefGoogle Scholar
  8. 8.
    Cella, D., Riley, W., Stone, A., Rothrock, N., Reeve, B., Yount, S., et al. (2010). The Patient-Reported Outcomes Measurement Information System (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005–2008. Journal of Clinical Epidemiology, 63(11), 1179–1194. doi: 10.1016/j.jclinepi.2010.04.011.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Pilkonis, P. A., Choi, S. W., Reise, S. P., Stover, A. M., Riley, W. T., & Cella, D. (2011). Item banks for measuring emotional distress from the Patient-Reported Outcomes Measurement Information System (PROMIS®): Depression, anxiety, and anger. Assessment, 18(3), 263–283. doi: 10.1177/1073191111411667.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    American Psychiatric Association (2000). Diagnostic and statistical manual of mental disorders: DSM-IV-TR (4th ed., text revision ed.). Washington, DC: American Psychiatric Association.Google Scholar
  11. 11.
    Kroenke, K., Spitzer, R. L., & Williams, J. B. (2001). The Phq-9. Journal of General Internal Medicine, 16(9), 606–613. doi: 10.1046/j.1525-1497.2001.016009606.x.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Narrow, W. E., Clarke, D. E., Kuramoto, S. J., Kraemer, H. C., Kupfer, D. J., Greiner, L., & Regier, D. A. (2013). DSM-5 Field Trials in the United States and Canada, part III: Development and reliability testing of a cross-cutting symptom assessment for DSM-5. American Journal of Psychiatry, 170(1), 71–82. doi: 10.1176/appi.ajp.2012.12071000.PubMedCrossRefGoogle Scholar
  13. 13.
    Miller, W. C., Anton, H. A., & Townson, A. F. (2007). Measurement properties of the CESD scale among individuals with spinal cord injury. Spinal cord, 46(4), 287–292. doi: 10.1038/ Scholar
  14. 14.
    Amtmann, D., Bamer, A. M., Cook, K. F., Askew, R. L., Noonan, V. K., & Brockway, J. A. (2012). University of Washington self-efficacy scale: A new self-efficacy scale for people with disabilities. Archives of Physical Medicine and Rehabilitation, 93(10), 1757–1765. doi: 10.1016/j.apmr.2012.05.001.PubMedCrossRefGoogle Scholar
  15. 15.
    Cook, K. F., Molton, I. R., & Jensen, M. P. (2011). Fatigue and aging with a disability. Archives of Physical Medicine and Rehabilitation, 92(7), 1126–1133. doi: 10.1016/j.apmr.2011.02.017.PubMedCrossRefGoogle Scholar
  16. 16.
    Krause, J. S., Saunders, L. L., Bombardier, C., & Kalpakjian, C. (2011). Confirmatory factor analysis of the Patient Health Questionnaire-9: A study of the participants from the spinal cord injury model systems. PM&R, 3(6), 533–540. doi: 10.1016/j.pmrj.2011.03.003.CrossRefGoogle Scholar
  17. 17.
    Muthén, L. K., & Muthén, B. O. (1998–2013). Mplus User’s Guide (7th ed.). Los Angeles, CA: Muthén & Muthén.Google Scholar
  18. 18.
    Bentler, P. M. (1980). Multivariate analysis with latent variables: Causal modeling. Annual Review of Psychology, 31(1), 419–456. doi: 10.1146/ Scholar
  19. 19.
    Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38(1), 1–10. doi: 10.1007/BF02291170.CrossRefGoogle Scholar
  20. 20.
    Steiger, J. H., & Lind, J. C. (1980). Statistically-based tests for the number of common factors. Paper presented at the Annual spring meeting of the Psychometric Society, Iowa City, IA.Google Scholar
  21. 21.
    Kline, R. B. (2005). Principles and practice of structural equation modeling. New York: Guilford press.Google Scholar
  22. 22.
    Browne, M., & Cudeck, R. (1993). Alternative ways of assessing model fit. London: Sage.Google Scholar
  23. 23.
    Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods, 17(3), 313–335. doi: 10.1037/a0026802.PubMedCrossRefGoogle Scholar
  24. 24.
    Fong, T. C., & Ho, R. T. (2014). Testing gender invariance of the Hospital Anxiety and Depression Scale using the classical approach and Bayesian approach. Quality of Life Research, 23(5), 1421–1426. doi: 10.1007/s11136-013-0594-3.PubMedCrossRefGoogle Scholar
  25. 25.
    Cook, K. F., Bombardier, C. H., Bamer, A. M., Choi, S. W., Kroenke, K., & Fann, J. R. (2011). Do somatic and cognitive symptoms of traumatic brain injury confound depression screening? Archives of Physical Medicine and Rehabilitation, 92(5), 818–823. doi: 10.1016/j.apmr.2010.12.008.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Hyewon Chung
    • 1
    Email author
  • Jiseon Kim
    • 2
  • Robert L. Askew
    • 3
  • Salene M. W. Jones
    • 4
  • Karon F. Cook
    • 5
  • Dagmar Amtmann
    • 6
  1. 1.Department of EducationChungnam National UniversityDaejeonSouth Korea
  2. 2.Department of Rehabilitation MedicineUniversity of WashingtonSeattleUSA
  3. 3.Institute of Public Health and MedicineNorthwestern University Feinberg School of MedicineChicagoUSA
  4. 4.Group Health Research InstituteSeattleUSA
  5. 5.Department of Medical Social SciencesNorthwestern University Feinberg School of MedicineChicagoUSA
  6. 6.Department of Rehabilitation MedicineUniversity of WashingtonSeattleUSA

Personalised recommendations