Quality of Life Research

, Volume 24, Issue 7, pp 1767–1774 | Cite as

The EQ-5D-5L index score is more discriminative than the EQ-5D-3L index score in diabetes patients

  • Chen-Wei Pan
  • Hong-Peng Sun
  • Xingzhi Wang
  • Qinghua Ma
  • Yong Xu
  • Nan Luo
  • Pei Wang
Article

Abstract

Purpose

To compare the discriminative power of the index scores of EQ-5D-5L (5L) and EQ-5D-3L (3L) in diabetes patients in China.

Methods

A consecutive sample of type 2 diabetes mellitus (T2DM) patients in the clinics self-completed the two versions of EQ-5D. The 3L index score was obtained from the Chinese 3L value set; the 5L index score was predicted from the 3L index score using an interim scoring. Relative efficiency (RE) of the 5L and 3L index scores was calculated to compare their ability in differentiating between T2DM patients with and without one of ten clinical conditions. The efficiency of the 5L and 3L health state classification systems was assessed using the Shannon index (H′) and in terms of ceiling effects.

Results

A total of 289 T2DM patients participated in this study. The 5L score was systematically lower than the 3L score for T2DM patients with and without a condition (range −0.36 to −0.06). The 5L score exhibited higher discriminative power in nine of ten conditions, with the mean RE value being 1.92. 5L had higher H′ values than 3L in all the five EQ-5D dimensions: mobility (1.14 vs. 0.70), self-care (0.44 vs. 0.33), usual activities (0.72 vs. 0.47), pain/discomfort (1.58 vs. 1.10), and anxiety/depression (1.03 vs. 0.67). The overall ceiling effects decreased from 56.7 % (3L) to 36.7 % (5L).

Conclusion

The 5L index score is more discriminative than the 3L index score in T2DM patients and therefore is preferable for use in this population.

Keywords

EQ-5D-3L EQ-5D-5L Preference Diabetes Discriminative power China 

Notes

Acknowledgments

This study was supported by the National Nature Science Foundation of China (81402761) and Nature Science Foundation of Jiangsu, China (BK20140361).

References

  1. 1.
    Rabin, R., & de Charro, F. (2001). EQ-5D: A measure of health status from the EuroQol Group. Annals of Medicine, 33, 337–343.PubMedCrossRefGoogle Scholar
  2. 2.
    Dolan, P. (1997). Modeling valuations for EuroQol health states. Medical Care, 35, 1095–1108.PubMedCrossRefGoogle Scholar
  3. 3.
    Shaw, J. W., Johnson, J. A., & Coons, S. J. (2005). US valuation of the EQ-5D health states: Development and testing of the D1 valuation model. Medical Care, 45, 203–220.CrossRefGoogle Scholar
  4. 4.
    Liu, G., Wu, H., Li, M., Gao, C., & Luo, N. (2014). Chinese time trade-off values for EQ-5D health states. Value in Health, 17, 597–604.PubMedCrossRefGoogle Scholar
  5. 5.
    Luo, N., Wang, P., Thumboo, J., Lim, Y. W., & Vrijhoef, H. J. (2014). Valuation of EQ-5D-3L health states in Singapore: Modeling of time trade-off values for 80 empirically observed health states. Pharmacoeconomics, 30(5), 495–507.CrossRefGoogle Scholar
  6. 6.
    Tsuchiya, A., Ikeda, S., Ikegami, N., Nishimura, S., Sakai, I., Fukuda, T., et al. (2002). Estimating an EQ-5D population value set: The case of Japan. Health Economics, 11(4), 341–353.PubMedCrossRefGoogle Scholar
  7. 7.
    Baida, X., Roset, M., Herdman, M., & Kind, P. (2001). A comparison of United Kingdom and Spanish general population general population time trade-off values for EQ-5D health states. Medical Decision Making, 21(1), 7–16.CrossRefGoogle Scholar
  8. 8.
    Luo, N., Johnson, J. A., Shaw, J. W., & Coons, S. J. (2007). A comparison of EQ-5D index scores derived from the US and UK population-based scoring functions. Medical Decision Making, 27(3), 321–326.CrossRefGoogle Scholar
  9. 9.
    Norman, R., Cronin, P., Viney, R., King, M., Street, D., & Ratcliffe, J. (2009). International comparisons in valuing EQ-5D health states: A review and analysis. Value in Health, 12(8), 1194–1200.PubMedCrossRefGoogle Scholar
  10. 10.
    Janssen, M. F., Lubetkin, E. I., Sekhobo, J. P., & Pickard, A. S. (2011). The use of the EQ-5D preference-based health status measure in adults with Type 2 diabetes mellitus. Diabetic Medicine, 28, 395–413.PubMedCrossRefGoogle Scholar
  11. 11.
    Wang, H. M., Patrick, D. L., Edwards, T. C., Skalicky, A. M., Zeng, H. Y., & GU, W. W. (2012). Validation of the EQ-5D in a general population sample in urban China. Quality of Life Research, 21(1), 155–160.PubMedCrossRefGoogle Scholar
  12. 12.
    Luo, N., Cang, S. Q., Quan, H. M. J., How, C. H., & Tay, E. G. (2012). The discriminative power of the EuroQol visual analog scale is sensitive to survey language in Singapore. Health and Quality of Life Outcomes, 10, 32.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Pickard, A. S., Wilke, C. T., Lin, H. W., et al. (2007). Health utilities using the EQ-5D in studies of cancer. Pharmacoeconomics, 25, 365–394.PubMedCrossRefGoogle Scholar
  14. 14.
    Ong, S. C., Mark, B., Aung, M. O., Li, S. C., & Lim, S. G. (2008). Health-related quality of life in chronic hepatitis B patients. Hepatology, 47(4), 1108–1117.PubMedCrossRefGoogle Scholar
  15. 15.
    McLernon, D. J., Dillon, J., & Donna, P. T. (2008). Health-state utilities in liver disease: A systematic review. Medical Decision Making, 28(4), 582–592.PubMedCrossRefGoogle Scholar
  16. 16.
    Macran, S., Weatherly, H., & Kind, P. (2003). Measuring population health? A comparison of three generic health status measures. Medical Care, 42, 218–231.Google Scholar
  17. 17.
    Petrou, S., & Hockely, C. (2005). An investigation into the empirical validity of the EQ-5D and SF-6D based on hypothetical preferences in a general population. Health Economics, 14, 1169–1189.PubMedCrossRefGoogle Scholar
  18. 18.
    Myers, C., & Wilks, D. (1999). Comparison of Euroqol EQ-5D and SF-36 in patients with chronic fatigue syndrome. Quality of Life Research, 8, 9–16.PubMedCrossRefGoogle Scholar
  19. 19.
    Bharmal, M., & Thomas, J. I. I. I. (2006). Comparing the EQ-5D and the SF-6D descriptive systems to assess their ceiling effects in the US general population. Value in Health, 9, 262–271.PubMedCrossRefGoogle Scholar
  20. 20.
    Wang, H., Kindig, D. A., & Mullahy, J. (2005). Variation in Chinese population health related quality of life: Results from a EuroQol study in Beijing, China. Quality of Life Research, 14, 119–132.PubMedCrossRefGoogle Scholar
  21. 21.
    Brazier, J., Roberts, J., & Tsychiya, A. (2004). A comparison of the EQ-5D and SF-6D across seven patients groups. Health Economics, 13, 873–884.PubMedCrossRefGoogle Scholar
  22. 22.
    Bech, P., Moses, R., & Gomis, R. (2008). The effect of prandial glucose regulation with repaglinide on treatment satisfaction, wellbeing and health status in patients with pharmacotherapy naïve Type 2 diabetes: A placebo-controlled, multicentre study. Quality of Life Research, 12, 413–425.CrossRefGoogle Scholar
  23. 23.
    Bagust, A., & Beale, S. (2005). Modelling EuroQol health-related utility values for diabetic complications from CODE-2 data. Health Economics, 14, 217–230.PubMedCrossRefGoogle Scholar
  24. 24.
    Morgan, C. L., McEwan, P., Morrissey, M., Peter, J. R., Poole, C., & Currie, C. J. (2006). Characterization and comparison of health-related utility in people with diabetes with various single and multiple vascular complications. Diabetic Medicine, 23, 1100–1105.PubMedCrossRefGoogle Scholar
  25. 25.
    EuroQol Group. EQ-5D-5L User Guide. (2014). Basic information on how to use the EQ-5D-5L instrument. http://www.euroqol.org/fileadmin/user_upload/Documenten/PDF/Folders_Flyers/UserGuide_EQ-5D-5L.pdf. Accessed 10 July 2014.
  26. 26.
    van Hout, B., Janssen, M. F., Feng, Y. S., Kohlmann, T., Busschbach, J., Golicki, D., et al. (2012). Interim scoring for the EQ-5D-5L: Mapping the EQ-5D-5L to EQ-5D-3L value sets. Value in Health, 15(5), 708–715.PubMedCrossRefGoogle Scholar
  27. 27.
    Jia, Y. X., Cui, F. Q., Li, L., Zhang, D. L., Zhang, G. M., Wang, F. Z., et al. (2014). Comparison between the EQ-5D-5L and the EQ-5D-3L in patients with hepatitis B. Quality of Life Research,. doi:10.1007/311136-014-0670-3.PubMedGoogle Scholar
  28. 28.
    Kim, S. H., Kim, H. J., Lee, S. I., & Jo, M. W. (2012). Comparing the psychometric properties of the EQ-5D-3L and EQ-5D-5L in cancer patients in Korea. Quality of Life Research, 21(6), 1065–1073.PubMedCrossRefGoogle Scholar
  29. 29.
    Pickard, A. S., De leon, M. C., Kohlmann, T., Cella, D., & Rosenbloom, S. (2007). Psychometric comparison of the standard EQ-5D to a 5 level version in cancer patients. Medical Care, 45(3), 259–263.PubMedCrossRefGoogle Scholar
  30. 30.
    Scalone, L., Ciampichini, R., Fagiuoli, S., Gardini, I., Fusco, F., Gaeta, L., et al. (2013). Comparing the performance of the standard EQ-5D 3L with the new version EQ-5D 5L in patients with chronic hepatic disease. Quality of Life Research, 22(7), 1707–1716.PubMedCrossRefGoogle Scholar
  31. 31.
    Janssen, M. F., Pickard, A. S., Golicki, D., Gudex, C., Niewada, M., Scalone, L., et al. (2013). Measurement properties of the EQ-5D-5L compared to the EQ-5D-3L across eight patient groups: A multi-country study. Quality of Life Research, 22(7), 1717–1727.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Janssen, M. F., Birnie, E., Haagsma, J. A., & Bonsel, G. J. (2008). Comparing the standard EQ-5D three-level system with a five-level version. Value in Health, 11(2), 275–284.PubMedCrossRefGoogle Scholar
  33. 33.
    Craig, B. M., Pickard, A. S., & Lubetkin, E. I. (2014). Health problems are more common, but less severe when measured using newer EQ-5D versions. Journal of Clinical Epidemiology, 67, 93–99.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Shannon, C. E., & Weaver, W. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 161–163.CrossRefGoogle Scholar
  35. 35.
    Janssen, M. F., Birnie, E., & Bonsel, G. J. (2007). Evaluating the discriminatory power of EQ-5D, HUI2 and HUI3 in a US general population survey using Shannon’s indices. Quality of Life Research, 16(5), 895–904.PubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Chen-Wei Pan
    • 1
  • Hong-Peng Sun
    • 1
  • Xingzhi Wang
    • 2
  • Qinghua Ma
    • 3
  • Yong Xu
    • 1
  • Nan Luo
    • 2
  • Pei Wang
    • 2
  1. 1.Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public HealthMedical College of Soochow UniversitySuzhouChina
  2. 2.Saw Swee Hock School of Public HealthNational University of SingaporeSingaporeSingapore
  3. 3.The 3rd People’s Hospital of Xiangcheng DistrictSuzhouChina

Personalised recommendations