Quality of Life Research

, Volume 24, Issue 5, pp 1281–1293 | Cite as

Validation of the Care-Related Quality of Life Instrument in different study settings: findings from The Older Persons and Informal Caregivers Survey Minimum DataSet (TOPICS-MDS)

  • J. E. Lutomski
  • N. J. A. van Exel
  • G. I. J. M. Kempen
  • E. P. Moll van Charante
  • W. P. J. den Elzen
  • A. P. D. Jansen
  • P. F. M. Krabbe
  • B. Steunenberg
  • E. W. Steyerberg
  • M. G. M. Olde Rikkert
  • R. J. F. Melis



Validity is a contextual aspect of a scale which may differ across sample populations and study protocols. The objective of our study was to validate the Care-Related Quality of Life Instrument (CarerQol) across two different study design features, sampling framework (general population vs. different care settings) and survey mode (interview vs. written questionnaire).


Data were extracted from The Older Persons and Informal Caregivers Minimum DataSet (TOPICS-MDS,, a pooled public-access data set with information on >3,000 informal caregivers throughout the Netherlands. Meta-correlations and linear mixed models between the CarerQol’s seven dimensions (CarerQol-7D) and caregiver’s level of happiness (CarerQol-VAS) and self-rated burden (SRB) were performed.


The CarerQol-7D dimensions were correlated to the CarerQol-VAS and SRB in the pooled data set and the subgroups. The strength of correlations between CarerQol-7D dimensions and SRB was weaker among caregivers who were interviewed versus those who completed a written questionnaire. The directionality of associations between the CarerQol-VAS, SRB and the CarerQol-7D dimensions in the multivariate model supported the construct validity of the CarerQol in the pooled population. Significant interaction terms were observed in several dimensions of the CarerQol-7D across sampling frame and survey mode, suggesting meaningful differences in reporting levels.


Although good scientific practice emphasises the importance of re-evaluating instrument properties in individual research studies, our findings support the validity and applicability of the CarerQol instrument in a variety of settings. Due to minor differential reporting, pooling CarerQol data collected using mixed administration modes should be interpreted with caution; for TOPICS-MDS, meta-analytic techniques may be warranted.


CarerQol-7D Caregivers Quality of life Geriatric health services Visual analogue scale 



The authors thank TOPICS-MDS Consortium members for their contribution to this research. The National Care for the Elderly Programme on behalf of the Organisation of Health Research and Development (ZonMw—The Netherlands). TOPICS-MDS Consortium: Project Group W.P.J. den Elzen (Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, Netherlands); A.P.D. Jansen (Department of General Practice and Elderly Care Medicine/EMGO + Institute for Health and Care Research, VU University Medical Center, Amsterdam, Netherlands); G.I.J.M. Kempen (CAPHRI School for Public Health and Primary Care, Department of Health Services Research, Maastricht University, Netherlands), P.F.M. Krabbe (Department of Epidemiology, University of Groningen, University Medical Center Groningen, Netherlands); R.J.F. Melis (Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen, Netherlands); E.P. Moll van Charante (Department of General Medicine, Academic Medical Center, Amsterdam, Netherlands); B. Steunenberg (Julius Center for Health Sciences and Primary Care, UMC Utrecht, Netherlands); E.W. Steyerberg (Department of Public Health, Erasmus MC University Medical Center, Rotterdam, Netherlands); Steering Committee E. Buskens (Department of Epidemiology, University of Groningen, University Medical Center, Groningen, Netherlands), J. Gussekloo (Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, Netherlands); H.E. van der Horst (Department of General Practice and Elderly Care Medicine, EMGO Institute for Health and Care Research, VU University Medical Centre Amsterdam, Netherlands); M.G.M. Olde-Rikkert, (Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen, Netherlands); S.E.J.A. de Rooij (Department of Internal Medicine, Academic Medical Center, Amsterdam, Netherlands); J.M.G.A. Schols (Department of Family Medicine and Department of Health Services Research, CAPHRI School for Public Health and Primary Care, Maastricht University, Maastricht, Netherlands); M.J. Schuurmans (Department of Rehabilitation, Nursing Science and Sports, University Medical Center Utrecht, Netherlands); D. Smilde (Department of Research Policy, Erasmus MC University Medical Centre, Rotterdam, Netherlands); R.G.J. Westendorp (Leyden Academy on Vitality and Ageing, Leiden University Medical Center); Working group D. van den Brink, J.E. Lutomski, L. Qin (Department of Geriatric Medicine, Radboud University Medical Center, Nijmegen, Netherlands).

Supplementary material

11136_2014_841_MOESM1_ESM.docx (32 kb)
Supplementary material 1 (DOCX 32 kb)


  1. 1.
    Robine, J. M., Michel, J. P., & Herrmann, F. R. (2007). Who will care for the oldest people in our ageing society? BMJ, 334(7593), 570–571.CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Agree, E. M., & Glaser, K. (2009). Demography of informal caregiving. In P. Uhlenberg (Ed.), International handbook of population aging (pp. 647–668). Netherlands: Springer.CrossRefGoogle Scholar
  3. 3.
    Ward, B. W., & Schiller, J. S. (2013). Prevalence of multiple chronic conditions among US adults: Estimates from the National Health Interview Survey, 2010. Preventing Chronic Disease, 10, E65.CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Caughey, G. E., Vitry, A. I., Gilbert, A. L., & Roughead, E. E. (2008). Prevalence of comorbidity of chronic diseases in Australia. BMC Public Health, 8, 221.CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Uijen, A. A., & van de Lisdonk, E. H. (2008). Multimorbidity in primary care: Prevalence and trend over the last 20 years. European Journal of General Practice, 14(Suppl 1), 28–32.CrossRefPubMedGoogle Scholar
  6. 6.
    Bevans, M., & Sternberg, E. M. (2012). Caregiving burden, stress, and health effects among family caregivers of adult cancer patients. JAMA, 307(4), 398–403.CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Schulz, R., & Beach, S. R. (1999). Caregiving as a risk factor for mortality: The Caregiver Health Effects Study. JAMA, 282(23), 2215–2219.CrossRefPubMedGoogle Scholar
  8. 8.
    Joling, K. J., van Hout, H. P., Schellevis, F. G., van der Horst, H. E., Scheltens, P., Knol, D. L., et al. (2010). Incidence of depression and anxiety in the spouses of patients with dementia: A naturalistic cohort study of recorded morbidity with a 6-year follow-up. The American Journal of Geriatric Psychiatry, 18(2), 146–153.CrossRefPubMedGoogle Scholar
  9. 9.
    Bobinac, A., van Exel, N. J., Rutten, F. F., & Brouwer, W. B. (2011). Health effects in significant others: Separating family and care-giving effects. Medical Decision Making, 31(2), 292–298.CrossRefPubMedGoogle Scholar
  10. 10.
    Mestheneos, E., & Triantafillou, J. (Eds.). (2005). Supporting family carers of older people in Europe: The Pan-European background report. Empirical evidence, policy trends and future perspectives. Hamburg: Lit Verlag.Google Scholar
  11. 11.
    Lutomski, J. E., Baars, M. A., Schalk, B. W., Boter, H., Buurman, B. M., den Elzen, W. P., et al. (2013). The development of the older persons and informal caregivers survey minimum dataset (TOPICS-MDS): A large-scale data sharing initiative. PLoS ONE, 8(12), e81673.CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Martin, P., & Lynn, P. (2011). The effects of mixed mode survey designs on simple and complex analyses. Centre for comparative social surveys working paper series: Paper no. 04: Centre for comparative social surveys, City University London.Google Scholar
  13. 13.
    Hood, K., Robling, M., Ingledew, D., Gillespie, D., Greene, G., Ivins, R., et al. (2012). Mode of data elicitation, acquisition and response to surveys: A systematic review. Health Technology Assessment, 16(27), 1–162.CrossRefPubMedGoogle Scholar
  14. 14.
    Groves, R. M., & Peytcheva, E. (2008). The impact of nonresponse rates on nonresponse bias: A meta-analysis. Public Opinion Quarterly, 72(2), 167–189.CrossRefGoogle Scholar
  15. 15.
    Streiner, D. L., & Norman, G. R. (2008). Health measure scales: A pratical guide to their development and use (4th ed., pp. 167–210). Oxford University Press: New York.; 247–276.CrossRefGoogle Scholar
  16. 16.
    Hoefman, R. J., van Exel, N. J., Foets, M., & Brouwer, W. B. (2011). Sustained informal care: The feasibility, construct validity and test–retest reliability of the CarerQol-instrument to measure the impact of informal care in long-term care. Aging & Mental Health, 15(8), 1018–1027.CrossRefGoogle Scholar
  17. 17.
    Hoefman, R. J., van Exel, N. J., Looren de Jong, S., Redekop, W. K., & Brouwer, W. B. (2011). A new test of the construct validity of the CarerQol instrument: Measuring the impact of informal care giving. Quality of Life Research, 20(6), 875–887.CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Brouwer, W. B., van Exel, N. J., van Gorp, B., & Redekop, W. K. (2006). The CarerQol instrument: A new instrument to measure care-related quality of life of informal caregivers for use in economic evaluations. Quality of Life Research, 15(6), 1005–1021.CrossRefPubMedGoogle Scholar
  19. 19.
    Hoefman, R. J., van Exel, J., Rose, J. M., van de Wetering, E. J., & Brouwer, W. B. (2014). A discrete choice experiment to obtain a tariff for valuing informal care situations measured with the CarerQol instrument. Medical Decision Making, 34(1), 84–96.CrossRefPubMedGoogle Scholar
  20. 20.
    Hoefman, R. J., van Exel, J., & Brouwer, W. (2013). How to include informal care in economic evaluations. Pharmacoeconomics, 31(12), 1105–1119.CrossRefPubMedGoogle Scholar
  21. 21.
    van Exel, N. J., Scholte op Reimer, W. J., Brouwer, W. B., van den Berg, B., Koopmanschap, M. A., & van den Bos, G. A. (2004). Instruments for assessing the burden of informal caregiving for stroke patients in clinical practice: A comparison of CSI, CRA, SCQ and self-rated burden. Clinical Rehabilitation, 18(2), 203–214.CrossRefPubMedGoogle Scholar
  22. 22.
    Brouwer, W. B., van Exel, N. J., van den Berg, B., van den Bos, G. A., & Koopmanschap, M. A. (2005). Process utility from providing informal care: The benefit of caring. Health Policy, 74(1), 85–99.CrossRefPubMedGoogle Scholar
  23. 23.
    Searle, S. D., Mitnitski, A., Gahbauer, E. A., Gill, T. M., & Rockwood, K. (2008). A standard procedure for creating a frailty index. BMC Geriatrics, 8, 24.CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Lutomski, J. E., Baars, M. A., van Kempen, J. A., Buurman, B. M., den Elzen, W. P., Jansen, A. P., et al. (2013). Validation of a frailty index from the older persons and informal caregivers survey minimum data set. Journal of the American Geriatrics Society, 61(9), 1625–1627.CrossRefPubMedGoogle Scholar
  25. 25.
    Terwee, C. B., Bot, S. D., de Boer, M. R., van der Windt, D. A., Knol, D. L., Dekker, J., et al. (2007). Quality criteria were proposed for measurement properties of health status questionnaires. Journal of Clinical Epidemiology, 60(1), 34–42.CrossRefPubMedGoogle Scholar
  26. 26.
    Mokkink, L. B., Terwee, C. B., Patrick, D. L., Alonso, J., Stratford, P. W., Knol, D. L., et al. (2010). The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. Journal of Clinical Epidemiology, 63(7), 737–745.CrossRefPubMedGoogle Scholar
  27. 27.
    Schwarzer, G. (2013). meta: Meta-analysis with R. Version = 3.1-2.
  28. 28.
    Hopkins, W. G. (2002). A new view of statistics: Effect magnitudes. Retrieved from on 27 February 2014.
  29. 29.
    Singer, J. D. (1998). Using SAS PROC MIXED to fit multilevel models, hierarchical models, and individual growth models. Journal of Educational and Behavioral Statistics, 23(4), 323–355.CrossRefGoogle Scholar
  30. 30.
    De Leeuw, E. D. (2005). To mix or not to mix data collection modes in surveys. Journal of Official Statistics, 21, 233–255.Google Scholar
  31. 31.
    van Praag, B. M. S., Frijters, P., & Ferrer-i-Carbonell, A. (2003). The anatomy of subjective well-being. Journal of Economic Behavior & Organization, 51, 29–49.CrossRefGoogle Scholar
  32. 32.
    Bobinac, A., van Exel, N. J. A., Rutten, F. F. H., & Brouwer, W. B. F. (2010). Caring for and caring about: Disentangling the caregiver effect and the family effect. Journal of Health Economics, 29, 549–556.CrossRefPubMedGoogle Scholar
  33. 33.
    van den Berg, B., & Ferrer-i-Carbonell, A. (2007). Monetary valuation of informal care: The well-being valuation method. Health Economics, 16, 1227–1244.CrossRefPubMedGoogle Scholar
  34. 34.
    Hoefman, R. J., Van Exel, N. J. A., & Brouwer, W. B. F. (2011) iMTA Valuation of Informal Care Questionnaire (iVICQ). Version 1.0 (December 2011). Rotterdam: iBMG/iMTA, 2011. Retrieved from on 25 September 2013.
  35. 35.
    Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & Group, P. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ, 339, b2535.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Higgins, J. P. T., & Green, S. (eds) (2009). Cochrane handbook for systematic reviews of interventions version 5.0.2 [updated September 2009]. The Cochrane Collaboration, 2009.
  37. 37.
    Riley, R. D., Lambert, P. C., & Abo-Zaid, G. (2010). Meta-analysis of individual participant data: Rationale, conduct, and reporting. BMJ, 340, c221.CrossRefPubMedGoogle Scholar
  38. 38.
    Boulton, G., Rawlins, M., Vallance, P., & Walport, M. (2011). Science as a public enterprise: The case for open data. Lancet, 377(9778), 1633–1635.CrossRefPubMedGoogle Scholar
  39. 39.
    Riley, R. D. (2010). Commentary: Like it and lump it? Meta-analysis using individual participant data. International Journal of Epidemiology, 39(5), 1359–1361.CrossRefPubMedGoogle Scholar
  40. 40.
    Ahmed, I., Sutton, A. J., & Riley, R. D. (2012). Assessment of publication bias, selection bias, and unavailable data in meta-analyses using individual participant data: A database survey. BMJ, 344, d7762.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • J. E. Lutomski
    • 1
    • 2
  • N. J. A. van Exel
    • 3
  • G. I. J. M. Kempen
    • 4
  • E. P. Moll van Charante
    • 5
  • W. P. J. den Elzen
    • 6
  • A. P. D. Jansen
    • 7
  • P. F. M. Krabbe
    • 8
  • B. Steunenberg
    • 9
  • E. W. Steyerberg
    • 10
  • M. G. M. Olde Rikkert
    • 1
  • R. J. F. Melis
    • 1
  1. 1.Department of Geriatric MedicineRadboud University Medical CenterNijmegenThe Netherlands
  2. 2.Anu Research CentreUniversity College CorkCorkIreland
  3. 3.Institute of Health Policy and ManagementErasmus UniversityRotterdamNetherlands
  4. 4.Department of Health Services Research, CAPHRI School for Public Health and Primary CareMaastricht UniversityMaastrichtNetherlands
  5. 5.Department of Internal Medicine and GeriatricsAcademic Medical CenterAmsterdamNetherlands
  6. 6.Department of Public Health and Primary CareLeiden University Medical CenterLeidenNetherlands
  7. 7.Department of General Practice and Elderly Care Medicine/EMGO + Institute for Health and Care ResearchVU University Medical CenterAmsterdamNetherlands
  8. 8.Department of Epidemiology, University Medical Centre GroningenUniversity of GroningenGroningenNetherlands
  9. 9.Julius Center for Health Sciences and Primary CareUMC UtrechtUtrechtNetherlands
  10. 10.Department of Public HealthErasmus MC University Medical CenterRotterdamNetherlands

Personalised recommendations