Quality of Life Research

, Volume 23, Issue 8, pp 2365–2374

Using WOMAC Index scores and personal characteristics to estimate Assessment of Quality of Life utility scores in people with hip and knee joint disease

  • Ilana N. Ackerman
  • Mark A. Tacey
  • Zanfina Ademi
  • Megan A. Bohensky
  • Danny Liew
  • Caroline A. Brand



To determine whether Assessment of Quality of Life (AQoL) utility scores can be reliably estimated from Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) scores in people with hip and knee joint disease (arthritis or osteoarthritis).


WOMAC and AQoL data were analysed from 219 people recruited for a national population-based study. Generalised linear models were used to estimate AQoL utility scores based on WOMAC total and subscale scores and personal characteristics. Goodness of fit was assessed for each model, and plots of prediction errors versus actual AQoL utility scores were used to gauge bias.


Each model closely predicted the average AQoL utility score for the overall sample (actual mean AQoL 0.64, range of predicted means 0.63–0.64; actual median AQoL 0.71, range of predicted medians 0.68–0.69). No clear preferred model was identified, and overall, the models predicted 40–46 % of the variance in AQoL utility scores. The WOMAC function subscale model performed similarly to the total score model. The models functioned best at the mid-range of AQoL scores, with greater bias observed for extreme scores. Inaccuracies in individual-level estimates and low/high health-related quality of life (HRQoL) subgroup estimates were evident.


Reliable overall group-level estimates were produced, supporting the application of these techniques at a population level. Using WOMAC scores to predict individual AQoL utility scores is not recommended, and the models may produce inaccurate estimates in studies targeting patients with low/high HRQoL. Where pain and stiffness data are unavailable, the WOMAC function subscale can be used to generate a reasonable utility estimate.


Arthritis Osteoarthritis Outcome measures Quality of life 


  1. 1.
    Australian Orthopaedic Association National Joint Replacement Registry. (2013). Annual report. Adelaide: Australian Orthopaedic Association.Google Scholar
  2. 2.
    Ackerman, I. N., & Osborne, R. H. (2012). Obesity and increased burden of hip and knee joint disease in Australia: Results from a national survey. BMC Musculoskeletal Disorders, 13, 254.PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Ackerman, I. N., Ademi, Z., Osborne, R. H., & Liew, D. (2013). Comparison of Health-Related Quality of Life, work status and health care utilization and costs according to hip and knee joint disease severity: Results from a national Australian study. Physical Therapy, 93(7), 889–899.PubMedCrossRefGoogle Scholar
  4. 4.
    McConnell, S., Kolopack, P., & Davis, A. M. (2001). The Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC): A review of its utility and measurement properties. Arthritis Care & Research, 45(5), 453–461.CrossRefGoogle Scholar
  5. 5.
    Ackerman, I. N., Graves, S. E., Bennell, K. L., & Osborne, R. H. (2006). Evaluating quality of life in hip and knee replacement: Psychometric properties of the WHOQOL-BREF instrument. Arthritis Care & Research, 55(4), 583–590.CrossRefGoogle Scholar
  6. 6.
    Collins, N. J., Misra, D., Felson, D. T., Crossley, K. M., & Roos, E. M. (2011). Measures of knee function: International Knee Documentation Committee (IKDC) Subjective Knee Evaluation Form, Knee Injury and Osteoarthritis Outcome Score (KOOS), Knee Injury and Osteoarthritis Outcome Score Physical Function Short Form (KOOS-PS), Knee Outcome Survey Activities of Daily Living Scale (KOS-ADL), Lysholm Knee Scoring Scale, Oxford Knee Score (OKS), Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Activity Rating Scale (ARS), and Tegner Activity Score (TAS). Arthritis Care & Research, 63(S11), S208–S228.CrossRefGoogle Scholar
  7. 7.
    Hawthorne, G., & Osborne, R. H. (2005). Population norms and meaningful differences for the Assessment of Quality of Life (AQoL) measure. Australian and New Zealand Journal of Public Health, 29(2), 136–142.PubMedCrossRefGoogle Scholar
  8. 8.
    Dakin, H. (2013). Review of studies mapping from quality of life or clinical measures to EQ-5D: An online database. Health and Quality of Life Outcomes, 11(1), 151.PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Australian Government Department of Health. (2014). Appendix 6: Utility valuation of health outcomes. http://www.pbs.gov.au/info/industry/listing/elements/pbac-guidelines/e-appendixes/f-appendix-6. Accessed 8 January 2014.
  10. 10.
    National Institute for Health and Care Excellence (NICE). (2014). Published technology appraisals. http://guidance.nice.org.uk/TA/Published. Accessed 8 January 2014.
  11. 11.
    Barton, G., Sach, T., Jenkinson, C., Avery, A., Doherty, M., & Muir, K. (2008). Do estimates of cost-utility based on the EQ-5D differ from those based on the mapping of utility scores? Health and Quality of Life Outcomes, 6(1), 51.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Xie, F., Pullenayegum, E. M., Li, S.-C., Hopkins, R., Thumboo, J., & Lo, N.-N. (2010). Use of a disease-specific instrument in economic evaluations: Mapping WOMAC onto the EQ-5D utility index. Value in Health, 13(8), 873–878.PubMedCrossRefGoogle Scholar
  13. 13.
    Grootendorst, P., Marshall, D., Pericak, D., Bellamy, N., Feeny, D., & Torrance, G. W. (2007). A model to estimate Health Utilities Index Mark 3 utility scores from WOMAC index scores in patients with osteoarthritis of the knee. Journal of Rheumatology, 34(3), 534–542.PubMedGoogle Scholar
  14. 14.
    Marshall, D., Pericak, D., Grootendorst, P., Gooch, K., Faris, P., Frank, C., et al. (2008). Validation of a prediction model to estimate Health Utilities Index Mark 3 utility scores from WOMAC index scores in patients with osteoarthritis of the hip. Value in Health, 11(3), 470–477.PubMedCrossRefGoogle Scholar
  15. 15.
    Pinedo-Villanueva, R. A., Turner, D., Judge, A., Raftery, J. P., & Arden, N. K. (2013). Mapping the Oxford hip score onto the EQ-5D utility index. Quality of Life Research, 22(3), 665–675.PubMedCrossRefGoogle Scholar
  16. 16.
    Dakin, H., Gray, A., & Murray, D. (2013). Mapping analyses to estimate EQ-5D utilities and responses based on Oxford Knee Score. Quality of Life Research, 22(3), 683–694.PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Busija, L., Pausenberger, E., Haines, T. P., Haymes, S., Buchbinder, R., & Osborne, R. H. (2011). Adult measures of general health and health-related quality of life. Arthritis Care & Research, 63, S383–S412.CrossRefGoogle Scholar
  18. 18.
    Ackerman, I. N., Busija, L., Tacey, M. A., Bohensky, M. A., Ademi, Z., Brand, C. A., & Liew, D. (in press). Performance of the Assessment of Quality of Life measure in people with hip and knee joint disease and implications for research and clinical use. Arthritis Care & Research.Google Scholar
  19. 19.
    World Health Organization. (2000). Obesity: Preventing and managing the global epidemic. Geneva: World Health Organization.Google Scholar
  20. 20.
    Australian Electoral Commission. (2013). Current federal electoral divisions. http://www.aec.gov.au/profiles/. Accessed 17 December 2013.
  21. 21.
    Australian Bureau of Statistics. (2014). 2033.0.55.001—Census of population and housing: Socio-economic indexes for areas (SEIFA), Australia—Data only, 2006. http://www.abs.gov.au/AUSSTATS/abs@.nsf/allprimarymainfeatures/356A4186CCDDC4D1CA257B3B001AC22C?opendocument. Accessed 8 January 2014.
  22. 22.
    Bellamy, N. (2009). WOMAC osteoarthritis index. User guide IX. Brisbane: Australia.Google Scholar
  23. 23.
    Hawthorne, G., Richardson, J., Day, N., & McNeil, H. (2000). Construction and utility scaling of the Assessment of Quality of Life (AQoL) instrument. Melbourne: Monash University.Google Scholar
  24. 24.
    Chen, A., Gupte, C., Akhtar, K., Smith, P., & Cobb, J. (2012). The global economic cost of osteoarthritis: How the UK compares. Arthritis. doi:10.1155/2012/698709.
  25. 25.
    Hiligsmann, M., Cooper, C., Arden, N., Boers, M., Branco, J., Luisa Brandi, M., Bruyère, O., Guillemin, F., Hochberg, M., Hunter, D., Kanis, J., Kvien, T., Laslop, A., Pelletier, J., Pinto, D., Reiter-Niesert, S., Rizzoli, R., Rovati, L., Severens, J., Silverman, S., Tsouderos, Y., Tugwell, P., & Reginster, J. (2013). Health economics in the field of osteoarthritis: An expert’s consensus paper from the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Seminars in Arthritis and Rheumatism. doi:10.1016/j.semarthrit.2013.07.003.
  26. 26.
    Ackerman, I. N., Graves, S. E., Wicks, I. P., Bennell, K. L., & Osborne, R. H. (2005). Severely compromised quality of life in women and those of lower socioeconomic status waiting for joint replacement surgery. Arthritis Care & Research, 53(5), 653–658.CrossRefGoogle Scholar
  27. 27.
    Bellamy, N., Wilson, C., & Hendrikz, J. (2010). Population-based normative values for the Western Ontario and McMaster Osteoarthritis Index and the Australian/Canadian (AUSCAN) Hand Osteoarthritis Index functional subscales. Inflammopharmacology, 18(1), 1–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Grotle, M., Hagen, K., Natvig, B., Dahl, F., & Kvien, T. (2008). Prevalence and burden of osteoarthritis: Results from a population survey in Norway. Journal of Rheumatology, 35(4), 677–684.PubMedGoogle Scholar
  29. 29.
    Australian Bureau of Statistics. (2014). 2007–2008 National health survey users’ guide—electronic. http://www.ausstats.abs.gov.au/ausstats/subscriber.nsf/0/CC0FB5A08570984ECA25762E0017CF2B/$File/4363055001_2007-08.pdf. Accessed 8 January 2014.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Ilana N. Ackerman
    • 1
  • Mark A. Tacey
    • 1
  • Zanfina Ademi
    • 1
    • 2
  • Megan A. Bohensky
    • 1
  • Danny Liew
    • 1
  • Caroline A. Brand
    • 1
  1. 1.Melbourne EpiCentre, Department of Medicine (Royal Melbourne Hospital)The University of Melbourne and Melbourne HealthParkvilleAustralia
  2. 2.Department of Epidemiology and Preventive MedicineMonash UniversityMelbourneAustralia

Personalised recommendations