Quality of Life Research

, Volume 23, Issue 7, pp 2089–2101 | Cite as

Evaluation properties of the French version of the OUT-PATSAT35 satisfaction with care questionnaire according to classical and item response theory analyses

  • M. Panouillères
  • A. Anota
  • T. V. Nguyen
  • A. Brédart
  • J. F. Bosset
  • A. Monnier
  • M. Mercier
  • J. B. Hardouin
Article

Abstract

Purpose

The present study investigates the properties of the French version of the OUT-PATSAT35 questionnaire, which evaluates the outpatients’ satisfaction with care in oncology using classical analysis (CTT) and item response theory (IRT).

Methods

This cross-sectional multicenter study includes 692 patients who completed the questionnaire at the end of their ambulatory treatment. CTT analyses tested the main psychometric properties (convergent and divergent validity, and internal consistency). IRT analyses were conducted separately for each OUT-PATSAT35 domain (the doctors, the nurses or the radiation therapists and the services/organization) by models from the Rasch family. We examined the fit of the data to the model expectations and tested whether the model assumptions of unidimensionality, monotonicity and local independence were respected.

Results

A total of 605 (87.4 %) respondents were analyzed with a mean age of 64 years (range 29–88). Internal consistency for all scales separately and for the three main domains was good (Cronbach’s α 0.74–0.98). IRT analyses were performed with the partial credit model. No disordered thresholds of polytomous items were found. Each domain showed high reliability but fitted poorly to the Rasch models. Three items in particular, the item about “promptness” in the doctors’ domain and the items about “accessibility” and “environment” in the services/organization domain, presented the highest default of fit. A correct fit of the Rasch model can be obtained by dropping these items. Most of the local dependence concerned items about “information provided” in each domain. A major deviation of unidimensionality was found in the nurses’ domain.

Conclusions

CTT showed good psychometric properties of the OUT-PATSAT35. However, the Rasch analysis revealed some misfitting and redundant items. Taking the above problems into consideration, it could be interesting to refine the questionnaire in a future study.

Keywords

Satisfaction with care OUT-PATSAT35 questionnaire Cancer Item response theory Classical test theory 

Abbreviations

AIC

Akaike information criterion

CT

Chemotherapy

CTT

Classical test theory

DIF

Differential item functioning

EFA

Exploratory factor analysis

EORTC

European Organization for Research and Treatment of Cancer

HRQoL

Health-related quality of life

IRT

Item response theory

PCA

Principal component analysis

PCM

Partial credit model

PRO

Patient-reported outcomes

SC

Satisfaction with care

SD

Standard deviation

RSM

Rating scale model

RT

Radiotherapy

Notes

Acknowledgments

The authors thank all physicians from the centers participating in the study who agreed to invite patients to participate in this study. We thank the clinical research assistants in the two centers who participated in the data collection. This work was supported by the Regional French Hospital Clinical Research Program.

Conflict of interest

The authors have no potential conflict of interest.

Supplementary material

11136_2014_658_MOESM1_ESM.doc (70 kb)
Supplementary material 1 (DOC 69 kb)
11136_2014_658_MOESM2_ESM.doc (30 kb)
Supplementary material 2 (DOC 30 kb)
11136_2014_658_MOESM3_ESM.doc (54 kb)
Supplementary material 3 (DOC 53 kb)

References

  1. 1.
    Burke, L. (2006). Guidance for industry: Patient-reported outcome measures: Use in medical product development to support labeling claims: draft guidance. Health and Quality of Life Outcomes, 4, 1.CrossRefGoogle Scholar
  2. 2.
    Rubin, H. R., Gandek, B., Rogers, W. H., Kosinski, M., McHorney, C. A., & Ware, J. E., Jr. (1993). Patients’ ratings of outpatient visits in different practice settings. Results from the Medical Outcomes Study. JAMA, 270(7), 835–840.PubMedCrossRefGoogle Scholar
  3. 3.
    Borras, J. M., Sanchez-Hernandez, A., Navarro, M., Martinez, M., Mendez, E., Ponton, J. L., et al. (2001). Compliance, satisfaction, and quality of life of patients with colorectal cancer receiving home chemotherapy or outpatient treatment: A randomised controlled trial. BMJ, 322(7290), 826.PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Bredart, A., Bottomley, A., Blazeby, J. M., Conroy, T., Coens, C., D’Haese, S., et al. (2005). An international prospective study of the EORTC cancer in-patient satisfaction with care measure (EORTC IN-PATSAT32). European Journal of Cancer, 41(14), 2120–2131.PubMedCrossRefGoogle Scholar
  5. 5.
    Poinsot, R., Altmeyer, A., Conroy, T., Savignoni, A., Asselain, B., Leonard, I., et al. (2006). Multisite validation study of questionnaire assessing out-patient satisfaction with care questionnaire in ambulatory chemotherapy or radiotherapy treatment. Bulletin du Cancer, 93(3), 315–327.PubMedGoogle Scholar
  6. 6.
    Arraras, J. I., Illarramendi, J. J., Viudez, A., Lecumberri, M. J., de la Cruz, S., Hernandez, B., et al. (2012). The cancer outpatient satisfaction with care questionnaire for chemotherapy, OUT-PATSAT35 CT: A validation study for Spanish patients. Supportive Care in Cancer, 20(12), 3269–3278.PubMedCrossRefGoogle Scholar
  7. 7.
    Arraras, J. I., Rico, M., Vila, M., Chicata, V., Asin, G., Martinez, M., et al. (2010). The EORTC cancer outpatient satisfaction with care questionnaire in ambulatory radiotherapy: EORTC OUT-PATSAT35 RT. Validation study for Spanish patients. Psychooncology, 19(6), 657–664.PubMedCrossRefGoogle Scholar
  8. 8.
    Hays, R. D., Morales, L. S., & Reise, S. P. (2000). Item response theory and health outcomes measurement in the 21st century. Medical Care, 38(9 Suppl), II28–II42.PubMedCentralPubMedGoogle Scholar
  9. 9.
    Nguyen, T. V., Bosset, J. F., Monnier, A., Fournier, J., Perrin, V., Baumann, C., et al. (2011). Determinants of patient satisfaction in ambulatory oncology: A cross sectional study based on the OUT-PATSAT35 questionnaire. BMC Cancer, 11, 526.PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Sitzia, J., & Wood, N. (1998). Response rate in patient satisfaction research: an analysis of 210 published studies. International Journal for Quality in Health Care, 10(4), 311–317.PubMedCrossRefGoogle Scholar
  11. 11.
    Nunnally, J. C. C., & Bernstein, I. H. (1994). Psychometric theory. New York: McGraw-Hill.Google Scholar
  12. 12.
    Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334.CrossRefGoogle Scholar
  13. 13.
    Floyd, F. J., & Widaman, K. F. (1995). Factor analysis in the development and refinement of clinical assessment instruments. Psychological Assessment, 7(3), 286.CrossRefGoogle Scholar
  14. 14.
    De Ayala, R. (2009). The theory and practice of item response theory. New York: Guilford Press.Google Scholar
  15. 15.
    Edelen, M. O., & Reeve, B. B. (2007). Applying item response theory (IRT) modeling to questionnaire development, evaluation, and refinement. Quality of Life Research, 16(Suppl 1), 5–18.PubMedCrossRefGoogle Scholar
  16. 16.
    Rasch, G. (1993). Probabilistic models for some intelligence and attainment tests. ERIC.Google Scholar
  17. 17.
    Fischer, G. H., & Molenaar, I. W. (1995). Rasch models: Foundations, recent developments, and applications. Berlin: Springer.CrossRefGoogle Scholar
  18. 18.
    Masters, G. N. (1982). A Rasch model for partial credit scoring. Psychometrika, 47(2), 149–174.CrossRefGoogle Scholar
  19. 19.
    Van der Linden, W. J., & Hambleton, R. K. (1997). Handbook of modern item response theory. New York: Springer.CrossRefGoogle Scholar
  20. 20.
    Andrich, D. (1978). A rating formulation for ordered response categories. Psychometrika, 43(4), 561–573.CrossRefGoogle Scholar
  21. 21.
    Tennant, A., & Conaghan, P. G. (2007). The Rasch measurement model in rheumatology: What is it and why use it? When should it be applied, and what should one look for in a Rasch paper? Arthritis and Rheumatism, 57(8), 1358–1362.PubMedCrossRefGoogle Scholar
  22. 22.
    Bjorner, J. B., Kosinski, M., & Ware, J. E., Jr. (2003). Calibration of an item pool for assessing the burden of headaches: An application of item response theory to the headache impact test (HIT). Quality of Life Research, 12(8), 913–933.PubMedCrossRefGoogle Scholar
  23. 23.
    Bland, J. M., & Altman, D. G. (1995). Multiple significance tests: The Bonferroni method. BMJ, 310(6973), 170.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Ramp, M., Khan, F., Misajon, R. A., & Pallant, J. F. (2009). Rasch analysis of the Multiple Sclerosis Impact Scale MSIS-29. Health Qual Life Outcomes, 7, 58.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Sijtsma, K., & Molenaar, I. W. (Eds.). (2002). Introduction to nonparametric item response theory (Vol. 5). Beverly Hills: Sage.Google Scholar
  26. 26.
    Bond, T. G., & Fox, C. M. (2013). Applying the Rasch model: Fundamental measurement in the human sciences. London: Psychology Press.Google Scholar
  27. 27.
    Linacre, J. M. (2002). Optimizing rating scale category effectiveness. Journal of Applied Measurement, 3(1), 85–106.PubMedGoogle Scholar
  28. 28.
    Smith, A. B., Rush, R., Fallowfield, L. J., Velikova, G., & Sharpe, M. (2008). Rasch fit statistics and sample size considerations for polytomous data. BMC Medical Research Methodology, 8, 33.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Smith, R. M., Schumacker, R. E., & Bush, M. J. (1998). Using item mean squares to evaluate fit to the Rasch model. Journal of Outcome Measurement, 2(1), 66–78.PubMedGoogle Scholar
  30. 30.
    Karabatsos, G. (2000). A critique of Rasch residual fit statistics. Journal of Applied Measurement, 1(2), 152–176.PubMedGoogle Scholar
  31. 31.
    Linacre, J., & Wright, B. (1994). Chi square fit statistics. Rasch Measurement Transactions, 8(2), 350.Google Scholar
  32. 32.
    Linacre, J. M. (2003). Rasch power analysis: Size vs. significance: Standardized chi square fit statistic. Rasch Measurement Transactions, 17, 918.Google Scholar
  33. 33.
    Sheridan, B. (1998). RUMM item analysis package: Rasch unidimensional measurement model. Rasch Measurement Transactions, 11(4), 599.Google Scholar
  34. 34.
    Smith, A. B., Wright, P., Selby, P. J., & Velikova, G. (2007). A Rasch and factor analysis of the Functional Assessment of Cancer Therapy-General (FACT-G). Health Qual Life Outcomes, 5, 19.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Smith, E. V., Jr. (2002). Detecting and evaluating the impact of multidimensionality using item fit statistics and principal component analysis of residuals. Journal of Applied Measurement, 3(2), 205–231.PubMedGoogle Scholar
  36. 36.
    Petersen, M. A., Groenvold, M., Aaronson, N., Blazeby, J., Brandberg, Y., de Graeff, A., et al. (2006). Item response theory was used to shorten EORTC QLQ-C30 scales for use in palliative care. Journal of Clinical Epidemiology, 59(1), 36–44.PubMedCrossRefGoogle Scholar
  37. 37.
    Pallant, J. F., Miller, R. L., & Tennant, A. (2006). Evaluation of the Edinburgh Post Natal Depression Scale using Rasch analysis. BMC Psychiatry, 6, 28.PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Smith, A. B., Wright, E. P., Rush, R., Stark, D. P., Velikova, G., & Selby, P. J. (2006). Rasch analysis of the dimensional structure of the Hospital Anxiety and Depression Scale. Psychooncology, 15(9), 817–827.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • M. Panouillères
    • 1
    • 3
  • A. Anota
    • 1
    • 2
    • 3
  • T. V. Nguyen
    • 1
  • A. Brédart
    • 4
  • J. F. Bosset
    • 1
    • 5
  • A. Monnier
    • 6
  • M. Mercier
    • 1
    • 2
  • J. B. Hardouin
    • 7
    • 8
  1. 1.EA3181University of Franche-ComteBesançonFrance
  2. 2.Quality of Life in Oncology Clinical Research PlatformBesançonFrance
  3. 3.Methodological and Quality of Life in Oncology UnitUniversity Hospital of BesançonBesançonFrance
  4. 4.Psycho-Oncology UnitInstitut CurieParisFrance
  5. 5.Oncology-Radiotherapy DepartmentBesançon University HospitalBesançonFrance
  6. 6.Radiotherapy DepartmentMontbeliard HospitalMontbeliardFrance
  7. 7.EA4275-SPHEREUniversity of NantesNantesFrance
  8. 8.Unit of Biostatistics and MethodologyUniversity Hospital of NantesNantesFrance

Personalised recommendations