Advertisement

Quality of Life Research

, Volume 23, Issue 6, pp 1753–1765 | Cite as

An evaluation of the Minnesota Living with Heart Failure Questionnaire using Rasch analysis

  • Theresa Munyombwe
  • Stefan Höfer
  • Donna Fitzsimons
  • David R. Thompson
  • Deidre Lane
  • Karen Smith
  • Felicity AstinEmail author
Article

Abstract

Purpose

The symptom burden of heart failure is significant and impacts upon health-related quality of life. The Minnesota Living with Heart Failure Questionnaire (MLHFQ) is widely used in clinical practice to measure self-reported health-related quality of life, but the psychometric properties of the instrument are not fully elucidated. To address this gap, we investigated item and person fit, differential item functioning, item thresholds ordering, targeting and dimensionality of the MLHFQ.

Methods

Three approaches were used, exploratory factor analysis, Mokken analysis and Rasch analysis, on a convenience sample of 109 participants with a diagnosis of HF from the UK. Participants were typically male (67 %) with a mean age of 68 years (range 41–88).

Results

Findings from the exploratory factor analysis of the MLHFQ revealed three factors (physical, emotional and social) that explained 72 % of the total variance. Mokken analysis confirmed the MLHFQ total scale, and the three subscales, as valid ordinal scales: the total MLHFQ scale [overall Loevinger coefficient (H) = 0.61], physical scale (H = 0.75), emotional scale (H = 0.79) and social scale (H = 0.552). Rasch analysis confirmed the physical scale as a unidimensional scale, but this was not consistent for the total MLHFQ scale which showed poor fit to the Rasch model (χ 2 = 162), df = 42, p < 0.0001). Six items of the total scale were misfitting (7, 8, 10, 14–16) and removing them improved the fit of the total scale. The physical subscale showed fit to the Rasch model (χ 2 = 20.24, df = 16, p = 0.21), and there was evidence of unidimensionality (t tests = 0.09, lower bound 95 % CI 0.04). There was evidence of disordered thresholds for the MLHFQ total and physical scale, and targeting was poor for both the total scale and its subscales.

Conclusion

We confirmed the MLHFQ subscales to be valid ordinal scales supporting the use of sum scores to assess quality of life in people diagnosed with HF. Floor effects were evident indicating that the ability of the instrument to identify differences across populations with mild HF may be suboptimal. The psychometric properties of the MLHFQ total scale may be improved by excluding problematic items from the total scale. Further research is warranted to verify findings from this study.

Keywords

Minnesota Living with Heart Failure Questionnaire Heart failure Quality of life Mokken analysis Rasch analysis 

Abbreviations

DIF

Differential item functioning

MLHFQ

Minnesota Living with Heart Failure Questionnaire

HRQoL

Heart failure-specific measure of health-related quality of life

CHFQ

Chronic Heart Failure Questionnaire

QLQ-SHF

Questionnaire for severe heart failure

KCCQ

Kansas City Cardiomyopathy Questionnaire

LVD-36

Left Ventricular Dysfunction Questionnaire 36

NYHA

New York Heart Association

QoL

Quality of life

IHD

Ischaemic heart disease

IRT

Item response theory

PSI

Person separation index

ANOVA

Analysis of variance

SD

Standard deviation

EFA

Exploratory factor analysis

RMSEA

Root mean square errors of approximation

MHM

Mokken model of monotone homogeneity

CFI

Comparative fit index

IRT

Item response theory

Notes

Acknowledgments

The authors wish to acknowledge the study participants and thank the EuroQoL Steering Committee for giving access to the UK MLHF data set.

References

  1. 1.
    Rector, T. S., Kubo, S. H., & Cohn, J. N. (1993). Patients’ self-assessment of their congestive heart failure. Part 2: Content, reliability and validity of a new measure, the Minnesota Living with Heart Failure Questionnaire. Heart Failure, 3, 198–209.Google Scholar
  2. 2.
    Asadi-Lari, M., Rao, A., & Gray, D. (2005). Health-related quality-of-life tools in heart failure. Expert Review of Pharmacoeconomics and Outcomes Research, 5(3), 267–270.PubMedCrossRefGoogle Scholar
  3. 3.
    Morgan, K., McGee, H., & Shelley, E. (2007). Quality of life assessment in heart failure interventions: A 10-year (1996–2005) review. European Journal of Cardiovascular Prevention and Rehabilitation, 14(5), 589–607.PubMedCrossRefGoogle Scholar
  4. 4.
    Mackintosh, A., Gibbons, E., & Fitzpatrick, R. A. (2009). Structured review of patient-reported outcome measures for people with heart failure. Report to the Department of Health. University of Oxford. http://phi.uhce.ox.ac.uk/pdf/PROMs_Oxford_Heart Failure_17092010.pdf.
  5. 5.
    Garin, O., Ferrer, M., Pont, A., Rue, M., Kotzeva, A., Wiklund, I., et al. (2009). Disease-specific health-related quality of life questionnaires for heart failure: A systematic review with meta-analyses. Quality of Life Research, 18(1), 71–85.PubMedCrossRefGoogle Scholar
  6. 6.
    Witham, M. D., Crighton, L. J., & McMurdo, M. E. (2007). Using an individualised quality of life measure in older heart failure patients. International Journal of Cardiology, 116(1), 40–57.PubMedCrossRefGoogle Scholar
  7. 7.
    Paul, S., & Sneed, N. V. (2002). Patient perceptions of quality of life and treatment in an outpatient congestive heart failure clinic. Congestive Heart Failure, 8(2), 74–79.PubMedCrossRefGoogle Scholar
  8. 8.
    De Jong, M., Moser, D. K., & Chung, M. L. (2005). Predictors of health status for heart failure patients. Progress in Cardiovascular Nursing, 20(4), 155–162.PubMedCrossRefGoogle Scholar
  9. 9.
    Tate, C. W. I., Robertson, A. D., Zolty, R., Shakar, S. F., Lindenfeld, J., Wolfel, E. F., et al. (2007). Quality of life and prognosis in heart failure: Results of the beta-blocker evaluation of survival trial (BEST). Journal of Cardiac Failure, 13(9), 732–737.PubMedCrossRefGoogle Scholar
  10. 10.
    Rodriguez-Artalejo, F., Guallar, P., Rodriguez, C., Monototo, C., et al. (2005). Health-related quality of life as a predictor of hospital readmission and death among persons with heart failure. Archives of Internal Medicine, 165(11), 1274–1279.PubMedCrossRefGoogle Scholar
  11. 11.
    Riegel, B., Moser, D. K., Glaser, D., Carlson, B., Deaton, C., Armola, R., et al. (2002). The Minnesota Living With Heart Failure Questionnaire: Sensitivity to differences and responsiveness to intervention intensity in a clinical population. Nursing Research, 51(4), 209–218.PubMedCrossRefGoogle Scholar
  12. 12.
  13. 13.
    Bennett, S. J., Oldridge, N. B., Eckert, G. J., Embree, J. L., et al. (2003). Comparison of quality of life measures in heart failure. Nursing Research, 52(4), 207–216.PubMedCrossRefGoogle Scholar
  14. 14.
    Heo, S., Moser, D. K., Riegel, B., Hall, L. A., & Christman, N. (2005). Testing the psychometric properties of the Minnesota Living with Heart Failure Questionnaire. Nursing Research, 54(4), 265–272.PubMedCrossRefGoogle Scholar
  15. 15.
    Van der Linden, W. J., & Hambleton, R. K. (1997). Handbook of modern item response theory. New York: Springer.CrossRefGoogle Scholar
  16. 16.
    Reise, S. P., & Waller, N. G. (2009). Item response theory and clinical measurement. Annual Review of Clinical Psychology, 5, 27–48.PubMedCrossRefGoogle Scholar
  17. 17.
    Pallant, J. F., & Tennant, A. (2007). An introduction to the Rasch measurement model: An example using the hospital anxiety and depression scale (HADS). The British Journal of Clinical Psychology, 46(Pt 1), 1–18.PubMedCrossRefGoogle Scholar
  18. 18.
    Cheng, K. K., Lee, J., Leung, S. F., Liang, R. H., Tai, J. W., Yeung, R. M., et al. (2011). Use of Rasch analysis in the evaluation of the Oropharyngeal Mucositis. Nurse Research, 60(4), 256–263.CrossRefGoogle Scholar
  19. 19.
    Hagquist, C., Bruce, M., & Gustavsson, J. P. (2009). Using the Rasch model in nursing research: An introduction and illustrative example. International Journal of Nursing Studies, 46(3), 380–393.PubMedCrossRefGoogle Scholar
  20. 20.
    Fries, J. F., Bruce, B., & Cella, D. (2005). The promise of PROMIS: Using item response theory to improve assessment of patient-reported outcomes. Clinical and Experimental Rheumatology, 23(5 Suppl 39), S53–S57.PubMedGoogle Scholar
  21. 21.
    Waugh, R. F., & Chapman, E. S. (2005). An analysis of dimensionality using factor analysis (true-score theory) and Rasch measurement: What is the difference? Which method is better? Journal of Applied Measurement, 6(1), 80–99.PubMedGoogle Scholar
  22. 22.
    Oldridge, N., Höfer, S., McGee, H., Conroy, R., Doyle, F., & Saner, H. (2012). The HeartQoL: Part II. Validation of a new core health-related quality of life questionnaire for patients with ischemic heart disease. European Journal of Preventive Cardiology, pp. 1–9.Google Scholar
  23. 23.
    Norris, M., & Lecavalier, L. (2009). Evaluating the use of exploratory factor analysis in developmental disability psychological research. Journal of Autism and Developmental Disorders, 40(1), 8–20. doi: 10.1007/s10803-009-0816-2.PubMedCrossRefGoogle Scholar
  24. 24.
    Muthèn, L. K., & Muthèn, B. O. (2011). MPlus user’s guide (6th ed.). Los Angeles, CA: Muthèn Muthèn.Google Scholar
  25. 25.
    Tabachnick, G., & Fidell, L. S. (2006). Using multivariate statistics (5th ed.). Needham Heights, MA, USA: Allyn and Bacon, Inc. ISBN 0205459382.Google Scholar
  26. 26.
    Hu, L., & Bentler, P. M. (1999). Cut off criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55.CrossRefGoogle Scholar
  27. 27.
    Curran, P. J., Bollen, K. A., Chen, F., Paxton, P., & Kirby, J. B. (2003). Finite sampling properties of the point estimates and confidence intervals of the RMSEA. Sociological Methods and Research, 32, 208–252.CrossRefGoogle Scholar
  28. 28.
    Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Chicago: University of Chicago Press.Google Scholar
  29. 29.
    Tennant, A., & Conaghan, P. (2007). The Rasch measurement model in rheumatology; what is it and why use it. When should it be applied, and what should one look for in a Rasch paper? Arthritis and Rheumatism, 57(8), 1358.PubMedCrossRefGoogle Scholar
  30. 30.
    Andrich, D., Lyne, A., & Sheridon, B. (2003). RUMM 2020. Perth: RUMM Laboratory.Google Scholar
  31. 31.
    Ramp, M., Khan, F., Misajon, R. A., & Pallant, J. F. (2009). Rasch analysis of the multiple sclerosis impact scale (MSIS-29. Health Quality of Life Outcomes, 7, 58.PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Smith, E. V, Jr. (2002). Detecting and evaluating the impact of multidimensionality using item fit statistics and principal components analysis of residuals. Journal of Applied Measurement, 3(2), 205–231.PubMedGoogle Scholar
  33. 33.
    Sijtsma, K., & Molenaar, I. W. (2002). Introduction to nonparametric item response theory (Vol. 5). Thousand Oaks, Calif, USA: Sage.Google Scholar
  34. 34.
    Paap, M. C., Meijer, R. R., Cohen-Kettenis, P. T., Richter-Appelt, H., et al. (2012). Why the factorial structure of the SCL-90-R is unstable: Comparing patient groups with different levels of psychological distress using Mokken Scale Analysis. Psychiatry Res. 2012 Dec 30, 200(2–3), pp. 819-826.Google Scholar
  35. 35.
    Roorda, L. D., Green, J. R., Houwink, A., Bagley, P. J., et al. (2012). Item hierarchy-based analysis of the Rivermead mobility index resulted in improved interpretation and enabled faster scoring in patients undergoing rehabilitation after stroke. Archives of Physical Medicine and Rehabilitation, 93(6), 1091–1096.PubMedCrossRefGoogle Scholar
  36. 36.
    Meijer, R., & Baneke, J. (2004). Analyzing psychopathology items: A case for nonparametric item response theory modeling. Psychological Methods, 9, 354–368.PubMedCrossRefGoogle Scholar
  37. 37.
    Meijer, R. R., Sijtsma, K., & Smid, N. G. (1990). Theoretical and empirical comparison of the Mokken and the Rasch approach to IRT. Applied Psychological Measurement, 14(3), 283–298.CrossRefGoogle Scholar
  38. 38.
    Van der Ark, L. A. (2011). Mokken (version 2.5.1): An R package for Mokken scale analysis [computer software], 2011.Google Scholar
  39. 39.
    StataCorp. Stata Statistical Software: Release 12.1. College Station, TX: StataCorp LP.Google Scholar
  40. 40.
    Stochl, J., Jones, P. B., & Croudace, T. J. (2012). Mokken scale analysis of mental health and well-being questionnaire item responses: A non-parametric IRT method in empirical research for applied health researchers. BMC Medical Research Methodology, 12, 74.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Linacre, J. M. (1994). Sample size and item calibration stability. Rasch Measurement Transaction, 7, 328.Google Scholar
  42. 42.
    Garin, O., Ferrer, M., Pont, A., Wiklund, I., Van Ganse, E., Vilagut, G., et al. (2013). Evidence on the global measurement model of the Minnesota Living with Heart Failure Questionnaire. Qual Life Res, May 16 [pub ahead of print].Google Scholar
  43. 43.
    Moon, R. J., Jung, Y. Y., Jeon, E., Choi, J., Hwang, J. M., & Lee, S. (2011). Reliability and validity of the Korean version of the Minnesota Living with Heart Failure Questionnaire. Heart and Lung, 41(1), 57–66.CrossRefGoogle Scholar
  44. 44.
    Hak, T., Willems, D., van der Wal, G., & Visser, F. A. (2004). Qualitative validation of the Minnesota Living with Heart Failure Questionnaire. Quality of Life Research, 13(2), 417–426.PubMedCrossRefGoogle Scholar
  45. 45.
    Ni, H., Toy, W., Burgess, D., Wise, K., Nauman, D. J., Crispell, K., et al. (2000). Comparative responsiveness of short-form 12 and Minnesota Living with Heart Failure Questionnaire in patients with heart failure. Journal of Cardiac Failure, 6(2), 83–91.PubMedCrossRefGoogle Scholar
  46. 46.
    O’Leary, C. J., & Jones, P. W. (2000). The Left Ventricular Dysfunction Questionnaire (LVD-36): Reliability, validity, and responsiveness. Heart, 83(6), 634–640.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    de Cock, E. S., Emons, W. H., Nefs, G., Pop, V. J., & Pouwer, F. (2011). Dimensionality and scale properties of the Edinburgh depression scale (EDS) in patients with type 2 diabetes mellitus: The DiaDDzoB study. BMC Psychiatry, 11, 141.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Theresa Munyombwe
    • 1
  • Stefan Höfer
    • 2
  • Donna Fitzsimons
    • 3
  • David R. Thompson
    • 4
  • Deidre Lane
    • 5
  • Karen Smith
    • 6
  • Felicity Astin
    • 7
    Email author
  1. 1.Center for Epidemiology and BiostatisticsUniversity of LeedsLeedsUK
  2. 2.Department of Medical PsychologyInnsbruck Medical UniversityInnsbruckAustria
  3. 3.Institute of Nursing Research, Belfast Health and Social Care TrustUniversity of UlsterBelfastUK
  4. 4.Cardiovascular Research CentreAustralian Catholic UniversityMelbourneAustralia
  5. 5.University of Birmingham Centre for Cardiovascular Sciences and City HospitalBirminghamUK
  6. 6.School of NursingUniversity of DundeeDundeeUK
  7. 7.School of Nursing, Midwifery, Social Work and Social SciencesUniversity of SalfordManchesterUK

Personalised recommendations