Advertisement

Quality of Life Research

, Volume 22, Issue 6, pp 1189–1200 | Cite as

Biological pathways and genetic mechanisms involved in social functioning

  • Juan R. OrdoñanaEmail author
  • Meike Bartels
  • Dorret I. Boomsma
  • David Cella
  • Miriam Mosing
  • Joao R. Oliveira
  • Donald L. Patrick
  • Ruut Veenhoven
  • Gert G. Wagner
  • Mirjam A.G. Sprangers
  • The GENEQOL Consortium
Review

Abstract

Purpose

Methods

A search of Web of Science and PubMed databases was conducted using combinations of the following keywords: genetics, twins, heritability, social functioning, social adjustment, social interaction, and social dysfunction.

Results

Variability in the definitions and measures of social functioning was extensive. Moderate to high heritability was reported for social functioning and related concepts, including prosocial behavior, loneliness, and extraversion. Disorders characterized by impairments in social functioning also show substantial heritability. Genetic variants hypothesized to be involved in social functioning are related to the network of brain structures and processes that are known to affect social cognition and behavior.

Conclusions

Better knowledge and understanding about the impact of genetic factors on social functioning is needed to help us to attain a more comprehensive view of health-related quality-of-life (HRQOL) and will ultimately enhance our ability to identify those patients who are vulnerable to poor social functioning.

Keywords

Quality of life Social functioning Patient-reported outcomes Genetic variants Genetic underpinning 

Notes

Acknowledgments

We are grateful to all members of the GENEQOL Consortium for their invaluable contribution to the consortium activities.

References

  1. 1.
    Adolphs, R. (2003). Cognitive neuroscience of human social behaviour. Nature Reviews Neuroscience, 4(3), 165–178.PubMedCrossRefGoogle Scholar
  2. 2.
    Brothers, L. (1990). The social brain: A project for integrating primate behavior and neurophysiology in a new domain. Concepts in Neuroscience, 1, 27–51.Google Scholar
  3. 3.
    Robinson, G. E., Fernald, R. D., & Clayton, D. F. (2008). Genes and social behavior. Science, 322(5903), 896–900.PubMedCrossRefGoogle Scholar
  4. 4.
    Cortina, S. D., Drotar, D., Ericksen, M., Lindsey, M., Patterson, T. L., Myers, J. M., et al. (2011). Genetic biomarkers of health-related quality of life in pediatric asthma. The Journal of Pediatric, 159(1), 21–26 e21.Google Scholar
  5. 5.
    Zou, Y. F., Wang, Y., Liu, P., Feng, X. L., Wang, B. Y., Zang, T. H., et al. (2010). Association of BDNF Val66Met polymorphism with both baseline HRQOL scores and improvement in HRQOL scores in Chinese major depressive patients treated with fluoxetine. Human Psychopharmacology, 25(2), 145–152.PubMedCrossRefGoogle Scholar
  6. 6.
    Sprangers, M. A., Sloan, J. A., Barsevick, A., Chauhan, C., Dueck, A. C., Raat, H., et al. (2010). Scientific imperatives, clinical implications, and theoretical underpinnings for the investigation of the relationship between genetic variables and patient-reported quality-of-life outcomes. Quality of Life Research, 19(10), 1395–1403.PubMedCrossRefGoogle Scholar
  7. 7.
    Romeis, J. C., Heath, A. C., Xian, H., Eisen, S. A., Scherrer, J. F., Pedersen, N. L., et al. (2005). Heritability of SF-36 among middle-age, middle-class, male-male twins. Medical Care, 43(11), 1147–1154.PubMedCrossRefGoogle Scholar
  8. 8.
    Sprangers, M. A., & Schwartz, C. E. (2008). Reflections on changeability versus stability of health-related quality of life: Distinguishing between its environmental and genetic components. Health Qualification of Life Outcomes, 6, 89.CrossRefGoogle Scholar
  9. 9.
    Sprangers, M. A., Sloan, J. A., Veenhoven, R., Cleeland, C. S., Halyard, M. Y., Abertnethy, A. P., et al. (2009). The establishment of the GENEQOL consortium to investigate the genetic disposition of patient-reported quality-of-life outcomes. Twin Research and Human Genetics, 12(3), 301–311.PubMedCrossRefGoogle Scholar
  10. 10.
    Barsevick, A., Frost, M., Zwinderman, A., Hall, P., & Halyard, M. (2010). I’m so tired: Biological and genetic mechanisms of cancer-related fatigue. Quality of Life Research, 19(10), 1419–1427.PubMedCrossRefGoogle Scholar
  11. 11.
    Shi, Q., Cleeland, C. S., Klepstad, P., Miaskowski, C., & Pedersen, N. L. (2010). Biological pathways and genetic variables involved in pain. Quality of Life Research, 19(10), 1407–1417.PubMedCrossRefGoogle Scholar
  12. 12.
    Sprangers, M. A., Bartels, M., Veenhoven, R., Baas, F., Martin, N. G., Mosing, M., et al. (2010). Which patient will feel down, which will be happy? The need to study the genetic disposition of emotional states. Quality of Life Research, 19(10), 1429–1437.PubMedCrossRefGoogle Scholar
  13. 13.
    WHO. (2002). Towards a common language for functioning, disability and health: ICF. Geneva: World Health Organization.Google Scholar
  14. 14.
    Sullivan, P. F., Daly, M. J., & O’Donovan, M. (2012). Genetic architectures of psychiatric disorders: The emerging picture and its implications. Nature Reviews Genetics, 13(8), 537–551.PubMedCrossRefGoogle Scholar
  15. 15.
    Ware, J. E., Jr., & Sherbourne, C. D. (1992). The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Medical Care, 30(6), 473–483.PubMedCrossRefGoogle Scholar
  16. 16.
    EuroQol Group. (1990). EuroQol–a new facility for the measurement of health-related quality of life. The EuroQol group. Health Policy, 16(3), 199–208.CrossRefGoogle Scholar
  17. 17.
    Burns, T., & Patrick, D. (2007). Social functioning as an outcome measure in schizophrenia studies. Acta Psychiatrica Scandinavica, 116(6), 403–418.PubMedCrossRefGoogle Scholar
  18. 18.
    van der Mei, S. F., Krol, B., van Son, W. J., de Jong, P. E., Groothoff, J. W., & van den Heuvel, W. J. (2006). Social participation and employment status after kidney transplantation: A systematic review. Quality of Life Research, 15(6), 979–994.PubMedCrossRefGoogle Scholar
  19. 19.
    Bonner, M. J., Hardy, K. K., Willard, V. W., Anthony, K. K., Hood, M., & Gururangan, S. (2008). Social functioning and facial expression recognition in survivors of pediatric brain tumors. Journal of Pediatric Psychology, 33(10), 1142–1152.PubMedCrossRefGoogle Scholar
  20. 20.
    Avis, N. E., Smith, K. W., Hambleton, R. K., Feldman, H. A., Selwyn, A., & Jacobs, A. (1996). Development of the multidimensional index of life quality. A quality of life measure for cardiovascular disease. Medical Care, 34(11), 1102–1120.PubMedCrossRefGoogle Scholar
  21. 21.
    The WHOQOL Group. (1998). Development of the World Health Organization WHOQOL-BREF quality of life assessment. The WHOQOL group. Psychological Medicine, 28(3), 551–558.CrossRefGoogle Scholar
  22. 22.
    Becker, M., Diamond, R., & Sainfort, F. (1993). A new patient focused index for measuring quality of life in persons with severe and persistent mental illness. Quality of Life Research, 2(4), 239–251.PubMedCrossRefGoogle Scholar
  23. 23.
    Aaronson, N. K., Ahmedzai, S., Bergman, B., Bullinger, M., Cull, A., Duez, N. J., et al. (1993). The European Organization for Research and Treatment of Cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology. Journal of the National Cancer Institute, 85(5), 365–376.PubMedCrossRefGoogle Scholar
  24. 24.
    Cella, D. F., Tulsky, D. S., Gray, G., Sarafian, B., Linn, E., Bonomi, A., et al. (1993). The Functional Assessment of Cancer Therapy scale: Development and validation of the general measure. Journal of Clinical Oncology, 11(3), 570–579.PubMedGoogle Scholar
  25. 25.
    Fayers, P. M., & Machin, D. (2007). Quality of life: The assessment, analysis and interpretation of patient-reported outcomes. Chichester: John Wiley & Sons Ltd.Google Scholar
  26. 26.
    Herzog, A. R., Ofstedal, M. B., & Wheeler, L. M. (2002). Social engagement and its relationship to health. Clinics in Geriatric Medicine, 18(3), 593–609, ix.Google Scholar
  27. 27.
    Rasulo, D., Christensen, K., & Tomassini, C. (2005). The influence of social relations on mortality in later life: A study on elderly Danish twins. Gerontologist, 45(5), 601–608.PubMedCrossRefGoogle Scholar
  28. 28.
    Tse, W. S., Rochelle, T. L., & Cheung, J. C. (2011). The relationship between personality, social functioning, and depression: A structural equation modeling analysis. International Journal of Psychology, 46(3), 234–240.PubMedCrossRefGoogle Scholar
  29. 29.
    Lyyra, T. M., & Heikkinen, R. L. (2006). Perceived social support and mortality in older people. Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 61(3), S147–S152.CrossRefGoogle Scholar
  30. 30.
    Neuhaus, E., Beauchaine, T. P., & Bernier, R. (2010). Neurobiological correlates of social functioning in autism. Clinical Psychology Review, 30(6), 733–748.PubMedCrossRefGoogle Scholar
  31. 31.
    Bouchard, T. J., Jr., & Loehlin, J. C. (2001). Genes, evolution, and personality. Behavior Genetics, 31(3), 243–273.PubMedCrossRefGoogle Scholar
  32. 32.
    McGue, M., Osler, M., & Christensen, K. (2010). Causal inference and observational research: The utility of twins. Perspective on Psychological Science, 5(5), 546–556.CrossRefGoogle Scholar
  33. 33.
    Boyce, C. J., & Wood, A. M. (2011). Personality prior to disability determines adaptation: Agreeable individuals recover lost life satisfaction faster and more completely. Psychological Science, 22(11), 1397–1402.PubMedCrossRefGoogle Scholar
  34. 34.
    Wilson, I. B., & Cleary, P. D. (1995). Linking clinical variables with health-related quality of life. A conceptual model of patient outcomes. JAMA, 273(1), 59–65.PubMedCrossRefGoogle Scholar
  35. 35.
    Singh-Manoux, A. (2005). Commentary: Modelling multiple pathways to explain social inequalities in health and mortality. International Journal of Epidemiology, 34(3), 638–639.PubMedCrossRefGoogle Scholar
  36. 36.
    Johnson, W., Kyvik, K. O., Mortensen, E. L., Skytthe, A., Batty, G. D., & Deary, I. J. (2010). Education reduces the effects of genetic susceptibilities to poor physical health. International Journal of Epidemiology, 39(2), 406–414.PubMedCrossRefGoogle Scholar
  37. 37.
    Ordoñana, J. R., Bartels, M., Rebollo-Mesa, I., Monteagudo, O., & Perez-Riquelme, F. (2010). Causes of individual differences in quality of life dimensions of the EQ-5D questionnaire. Paper presented at the 40th annual meeting of the behavior genetics association, Seoul.Google Scholar
  38. 38.
    McGue, M., & Christensen, K. (2007). Social activity and healthy aging: A study of aging Danish twins. Twin Research and Human Genetics, 10(2), 255–265.PubMedCrossRefGoogle Scholar
  39. 39.
    Harris, J. R. (2007). Genetics, social behaviors, social environments and aging. Twin Research and Human Genetics, 10(2), 235–240.PubMedCrossRefGoogle Scholar
  40. 40.
    Gregory, A. M., Light-Hausermann, J. H., Rijsdijk, F., & Eley, T. C. (2009). Behavioral genetic analyses of prosocial behavior in adolescents. Developmental in Science, 12(1), 165–174.CrossRefGoogle Scholar
  41. 41.
    Knafo, A., & Plomin, R. (2006). Prosocial behavior from early to middle childhood: Genetic and environmental influences on stability and change. Developmental Psychology, 42(5), 771–786.PubMedCrossRefGoogle Scholar
  42. 42.
    Kendler, K. S. (1997). Social support: A genetic-epidemiologic analysis. American Journal of Psychiatry, 154(10), 1398–1404.PubMedGoogle Scholar
  43. 43.
    Boomsma, D. I., Cacioppo, J. T., Muthen, B., Asparouhov, T., & Clark, S. (2007). Longitudinal genetic analysis for loneliness in Dutch twins. Twin Research and Human Genetics, 10(2), 267–273.PubMedCrossRefGoogle Scholar
  44. 44.
    Bartels, M., Cacioppo, J. T., Hudziak, J. J., & Boomsma, D. I. (2008). Genetic and environmental contributions to stability in loneliness throughout childhood. American Journal of Medical Genetic B Neuropsychiatry Genetics, 147(3), 385–391.CrossRefGoogle Scholar
  45. 45.
    Boomsma, D. I., Willemsen, G., Dolan, C. V., Hawkley, L. C., & Cacioppo, J. T. (2005). Genetic and environmental contributions to loneliness in adults: The Netherlands twin register study. Behavior Genetics, 35(6), 745–752.PubMedCrossRefGoogle Scholar
  46. 46.
    Waaktaar, T., & Torgersen, S. (2012). Genetic and environmental causes of variation in perceived loneliness in young people. American Journal of Medical Genetic B Neuropsychiatry Genetics, 159(5), 580–588.CrossRefGoogle Scholar
  47. 47.
    Plomin, R., DeFries, J. C., McClearn, G. E., & McGuffin, P. (2008). Behavioral genetics (5th ed.). New York: Worth Publishers.Google Scholar
  48. 48.
    Keller, M. C., Coventry, W. L., Heath, A. C., & Martin, N. G. (2005). Widespread evidence for non-additive genetic variation in Cloninger’s and Eysenck’s personality dimensions using a twin plus sibling design. Behavior Genetics, 35(6), 707–721.PubMedCrossRefGoogle Scholar
  49. 49.
    Bratko, D., & Butkovic, A. (2007). Stability of genetic and environmental effects from adolescence to young adulthood: Results of Croatian longitudinal twin study of personality. Twin Research and Human Genetics, 10(1), 151–157.PubMedCrossRefGoogle Scholar
  50. 50.
    Kandler, C., Riemann, R., & Kampfe, N. (2009). Genetic and environmental mediation between measures of personality and family environment in twins reared together. Behavior Genetics, 39(1), 24–35.PubMedCrossRefGoogle Scholar
  51. 51.
    Flint, J., Greenspan, R. J., & Kendler, K. S. (2010). How genes influence behavior. Oxford: Oxford University Press.Google Scholar
  52. 52.
    McGrath, J. A., Avramopoulos, D., Lasseter, V. K., Wolyniec, P. S., Fallin, M. D., Liang, K. Y., et al. (2009). Familiality of novel factorial dimensions of schizophrenia. Archives of General Psychiatry, 66(6), 591–600.PubMedCrossRefGoogle Scholar
  53. 53.
    Ronald, A., Happe, F., & Plomin, R. (2005). The genetic relationship between individual differences in social and nonsocial behaviours characteristic of autism. Developmental Science, 8(5), 444–458.PubMedCrossRefGoogle Scholar
  54. 54.
    Anokhin, A. P., Golosheykin, S., & Heath, A. C. (2010). Heritability of individual differences in cortical processing of facial affect. Behavior Genetics, 40(2), 178–185.PubMedCrossRefGoogle Scholar
  55. 55.
    Meyer-Lindenberg, A., Hariri, A. R., Munoz, K. E., Mervis, C. B., Mattay, V. S., Morris, C. A., et al. (2005). Neural correlates of genetically abnormal social cognition in Williams syndrome. Nature Neuroscience, 8(8), 991–993.PubMedCrossRefGoogle Scholar
  56. 56.
    Stein, M. B., Goldin, P. R., Sareen, J., Zorrilla, L. T., & Brown, G. G. (2002). Increased amygdala activation to angry and contemptuous faces in generalized social phobia. Archives of General Psychiatry, 59(11), 1027–1034.PubMedCrossRefGoogle Scholar
  57. 57.
    Amaral, D. G. (2003). The amygdala, social behavior, and danger detection. Annals of the New York Academy of Sciences, 1000, 337–347.PubMedCrossRefGoogle Scholar
  58. 58.
    Donaldson, Z. R., & Young, L. J. (2008). Oxytocin, vasopressin, and the neurogenetics of sociality. Science, 322(5903), 900–904.PubMedCrossRefGoogle Scholar
  59. 59.
    Meyer-Lindenberg, A., Domes, G., Kirsch, P., & Heinrichs, M. (2011). Oxytocin and vasopressin in the human brain: Social neuropeptides for translational medicine. Nature Reviews Neuroscience, 12(9), 524–538.PubMedCrossRefGoogle Scholar
  60. 60.
    Kirsch, P., Esslinger, C., Chen, Q., Mier, D., Lis, S., Siddhanti, S., et al. (2005). Oxytocin modulates neural circuitry for social cognition and fear in humans. Journal of Neuroscience, 25(49), 11489–11493.PubMedCrossRefGoogle Scholar
  61. 61.
    Hollander, E., Bartz, J., Chaplin, W., Phillips, A., Sumner, J., Soorya, L., et al. (2007). Oxytocin increases retention of social cognition in autism. Biological Psychiatry, 61(4), 498–503.PubMedCrossRefGoogle Scholar
  62. 62.
    Heinrichs, M., Baumgartner, T., Kirschbaum, C., & Ehlert, U. (2003). Social support and oxytocin interact to suppress cortisol and subjective responses to psychosocial stress. Biological Psychiatry, 54(12), 1389–1398.PubMedCrossRefGoogle Scholar
  63. 63.
    Kosfeld, M., Heinrichs, M., Zak, P. J., Fischbacher, U., & Fehr, E. (2005). Oxytocin increases trust in humans. Nature, 435(7042), 673–676.PubMedCrossRefGoogle Scholar
  64. 64.
    Rodrigues, S. M., Saslow, L. R., Garcia, N., John, O. P., & Keltner, D. (2009). Oxytocin receptor genetic variation relates to empathy and stress reactivity in humans. Proceedings of Natural Academy of Science USA, 106(50), 21437–21441.CrossRefGoogle Scholar
  65. 65.
    Tost, H., Kolachana, B., Hakimi, S., Lemaitre, H., Verchinski, B. A., Mattay, V. S., et al. (2010). A common allele in the oxytocin receptor gene (OXTR) impacts prosocial temperament and human hypothalamic-limbic structure and function. Proceedings of Natural Academy of Science USA, 107(31), 13936–13941.CrossRefGoogle Scholar
  66. 66.
    Thompson, R. J., Parker, K. J., Hallmayer, J. F., Waugh, C. E., & Gotlib, I. H. (2011). Oxytocin receptor gene polymorphism (rs2254298) interacts with familial risk for psychopathology to predict symptoms of depression and anxiety in adolescent girls. Psychoneuroendocrinology, 36(1), 144–147.PubMedCrossRefGoogle Scholar
  67. 67.
    Bakermans-Kranenburg, M. J., & van Ijzendoorn, M. H. (2008). Oxytocin receptor (OXTR) and serotonin transporter (5-HTT) genes associated with observed parenting. Social Cognitive and Affection in Neuroscience, 3(2), 128–134.CrossRefGoogle Scholar
  68. 68.
    Inoue, H., Yamasue, H., Tochigi, M., Abe, O., Liu, X., Kawamura, Y., et al. (2010). Association between the oxytocin receptor gene and amygdalar volume in healthy adults. Biological Psychiatry, 68(11), 1066–1072.PubMedCrossRefGoogle Scholar
  69. 69.
    Kim, H. S., Sherman, D. K., Sasaki, J. Y., Xu, J., Chu, T. Q., Ryu, C., et al. (2010). Culture, distress, and oxytocin receptor polymorphism (OXTR) interact to influence emotional support seeking. Proceedings of Natural Academy of Science USA, 107(36), 15717–15721.CrossRefGoogle Scholar
  70. 70.
    Yrigollen, C. M., Han, S. S., Kochetkova, A., Babitz, T., Chang, J. T., Volkmar, F. R., et al. (2008). Genes controlling affiliative behavior as candidate genes for autism. Biological Psychiatry, 63(10), 911–916.PubMedCrossRefGoogle Scholar
  71. 71.
    Lerer, E., Levi, S., Salomon, S., Darvasi, A., Yirmiya, N., & Ebstein, R. P. (2008). Association between the oxytocin receptor (OXTR) gene and autism: Relationship to Vineland Adaptive Behavior scales and cognition. Molecular Psychiatry, 13(10), 980–988.PubMedCrossRefGoogle Scholar
  72. 72.
    Wassink, T. H., Piven, J., Vieland, V. J., Pietila, J., Goedken, R. J., Folstein, S. E., et al. (2004). Examination of AVPR1a as an autism susceptibility gene. Molecular Psychiatry, 9(10), 968–972.PubMedCrossRefGoogle Scholar
  73. 73.
    Walum, H., Westberg, L., Henningsson, S., Neiderhiser, J. M., Reiss, D., Igl, W., et al. (2008). Genetic variation in the vasopressin receptor 1a gene (AVPR1A) associates with pair-bonding behavior in humans. Proceedings of Natural Academy of Science USA, 105(37), 14153–14156.CrossRefGoogle Scholar
  74. 74.
    Meyer-Lindenberg, A., Kolachana, B., Gold, B., Olsh, A., Nicodemus, K. K., Mattay, V., et al. (2009). Genetic variants in AVPR1A linked to autism predict amygdala activation and personality traits in healthy humans. Molecular Psychiatry, 14(10), 968–975.PubMedCrossRefGoogle Scholar
  75. 75.
    Munafo, M. R., Yalcin, B., Willis-Owen, S. A., & Flint, J. (2008). Association of the dopamine D4 receptor (DRD4) gene and approach-related personality traits: Meta-analysis and new data. Biological Psychiatry, 63(2), 197–206.PubMedCrossRefGoogle Scholar
  76. 76.
    Lawford, B. R., Young, R., Noble, E. P., Kann, B., & Ritchie, T. (2006). The D2 dopamine receptor (DRD2) gene is associated with co-morbid depression, anxiety and social dysfunction in untreated veterans with post-traumatic stress disorder. European Psychiatry, 21(3), 180–185.PubMedCrossRefGoogle Scholar
  77. 77.
    Marino, C., Vanzin, L., Giorda, R., Frigerio, A., Lorusso, M. L., Nobile, M., et al. (2004). An assessment of transmission disequilibrium between quantitative measures of childhood problem behaviors and DRD2/Taql and DRD4/48 bp-repeat polymorphisms. Behavior Genetics, 34(5), 495–502.PubMedCrossRefGoogle Scholar
  78. 78.
    Godlewska, B. R., Olajossy-Hilkesberger, O., Limon, J., & Landowski, J. (2010). Ser9Gly polymorphism of the DRD3 gene is associated with worse premorbid social functioning and an earlier age of onset in female but not male schizophrenic patients. Psychiatry Research, 177(1–2), 266–267.PubMedCrossRefGoogle Scholar
  79. 79.
    Hariri, A. R., Mattay, V. S., Tessitore, A., Kolachana, B., Fera, F., Goldman, D., et al. (2002). Serotonin transporter genetic variation and the response of the human amygdala. Science, 297(5580), 400–403.PubMedCrossRefGoogle Scholar
  80. 80.
    Munafo, M. R., Brown, S. M., & Hariri, A. R. (2008). Serotonin transporter (5-HTTLPR) genotype and amygdala activation: A meta-analysis. Biological Psychiatry, 63(9), 852–857.PubMedCrossRefGoogle Scholar
  81. 81.
    Tse, W. S., & Bond, A. J. (2003). Reboxetine promotes social bonding in healthy volunteers. Journal of Psychopharmacolgy, 17(2), 189–195.CrossRefGoogle Scholar
  82. 82.
    James, B. D., Wilson, R. S., Barnes, L. L., & Bennett, D. A. (2011). Late-life social activity and cognitive decline in old age. Journal of the International Neuropsychology Society, 17(6), 998–1005.CrossRefGoogle Scholar
  83. 83.
    Small, B. J., Dixon, R. A., McArdle, J. J., & Grimm, K. J. (2012). Do changes in lifestyle engagement moderate cognitive decline in normal aging? Evidence from the Victoria Longitudinal Study. Neuropsychology, 26(2), 144–155.Google Scholar
  84. 84.
    Harris, S. E., & Deary, I. J. (2011). The genetics of cognitive ability and cognitive ageing in healthy older people. Trends in Cognitive Sciences, 15(9), 388–394.PubMedGoogle Scholar
  85. 85.
    Lee, T., Henry, J. D., Trollor, J. N., & Sachdev, P. S. (2010). Genetic influences on cognitive functions in the elderly: A selective review of twin studies. Brain Research Reviews, 64(1), 1–13.PubMedCrossRefGoogle Scholar
  86. 86.
    DiLalla, L. F., Elam, K. K., & Smolen, A. (2009). Genetic and gene-environment interaction effects on preschoolers’ social behaviors. Developmental Psychobiology, 51(6), 451–464.PubMedCrossRefGoogle Scholar
  87. 87.
    Creswell, K. G., Sayette, M. A., Manuck, S. B., Ferrell, R. E., Hill, S. Y., & Dimoff, J. D. (2012). DRD4 polymorphism moderates the effect of alcohol consumption on social bonding. PLoS ONE, 7(2), e28914.PubMedCrossRefGoogle Scholar
  88. 88.
    Kiser, D., Steemers, B., Branchi, I., & Homberg, J. R. (2012). The reciprocal interaction between serotonin and social behaviour. Neuroscience and Biobehavioral Reviews, 36(2), 786–798.PubMedCrossRefGoogle Scholar
  89. 89.
    Duncan, L. E., & Keller, M. C. (2011). A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. American Journal of Psychiatry, 168(10), 1041–1049.PubMedCrossRefGoogle Scholar
  90. 90.
    McCrae, R. R., Scally, M., Terracciano, A., Abecasis, G. R., & Costa, P. T., Jr. (2010). An alternative to the search for single polymorphisms: Toward molecular personality scales for the five-factor model. Journal of Personality and Social Psychology, 99(6), 1014–1024.PubMedCrossRefGoogle Scholar
  91. 91.
    Hewitt, J. K. (2012). Editorial policy on candidate gene association and candidate gene-by-environment interaction studies of complex traits. Behavior Genetics, 42(1), 1–2.PubMedCrossRefGoogle Scholar
  92. 92.
    Pearson, T. A., & Manolio, T. A. (2008). How to interpret a genome-wide association study. JAMA, 299(11), 1335–1344.PubMedCrossRefGoogle Scholar
  93. 93.
    Terracciano, A., Sanna, S., Uda, M., Deiana, B., Usala, G., Busonero, F., et al. (2010). Genome-wide association scan for five major dimensions of personality. Molecular Psychiatry, 15(6), 647–656.PubMedCrossRefGoogle Scholar
  94. 94.
    de Moor, M. H., Costa, P. T., Terracciano, A., Krueger, R. F., de Geus, E. J., Toshiko, T., et al. (2012). Meta-analysis of genome-wide association studies for personality. Molecular Psychiatry, 17(3), 337–349.Google Scholar
  95. 95.
    Gillespie, N. A., Zhu, G., Evans, D. M., Medland, S. E., Wright, M. J., & Martin, N. G. (2008). A genome-wide scan for Eysenckian personality dimensions in adolescent twin sibships: Psychoticism, extraversion, neuroticism, and lie. Journal of Personality, 76(6), 1415–1446.PubMedGoogle Scholar
  96. 96.
    Bosker, F. J., Hartman, C. A., Nolte, I. M., Prins, B. P., Terpstra, P., Posthuma, D., et al. (2011). Poor replication of candidate genes for major depressive disorder using genome-wide association data. Molecular Psychiatry, 16(5), 516–532.PubMedCrossRefGoogle Scholar
  97. 97.
    Attia, J., Ioannidis, J. P., Thakkinstian, A., McEvoy, M., Scott, R. J., Minelli, C., et al. (2009). How to use an article about genetic association: A: Background concepts. JAMA, 301(1), 74–81.PubMedCrossRefGoogle Scholar
  98. 98.
    John, O. P., Robins, R. W., & Pervin, L. A. (2008). Handbook of personality: Theory and research (3rd ed.). New York: Guilford Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Juan R. Ordoñana
    • 1
    Email author
  • Meike Bartels
    • 2
  • Dorret I. Boomsma
    • 2
  • David Cella
    • 3
  • Miriam Mosing
    • 4
  • Joao R. Oliveira
    • 5
  • Donald L. Patrick
    • 6
  • Ruut Veenhoven
    • 7
  • Gert G. Wagner
    • 8
  • Mirjam A.G. Sprangers
    • 9
  • The GENEQOL Consortium
  1. 1.Department of Human Anatomy and PsychobiologyUniversity of Murcia, and Murcia Institute for Biomedical Research (IMIB)MurciaSpain
  2. 2.Department of Biological PsychologyVU UniversityAmsterdamThe Netherlands
  3. 3.Department of Medical Social SciencesFeinberg School of MedicineChicago, ILUS
  4. 4.Queensland Institute of Medical ResearchBrisbaneAustralia
  5. 5.Department of NeuropsychiatryFederal University of PernambucoRecife-PernambucoBrazil
  6. 6.Department of Health ServicesUniversity of WashingtonSeattle, WAUSA
  7. 7.Faculty of Social SciencesErasmus University RotterdamRotterdamThe Netherlands
  8. 8.Max Planck Institute for Human DevelopmentBerlin University of Technology, and German Institute for Economic ResearchBerlinGermany
  9. 9.Department of Medical Psychology, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations