Advertisement

Quality of Life Research

, Volume 20, Issue 4, pp 479–490 | Cite as

Development of computerized adaptive testing (CAT) for the EORTC QLQ-C30 physical functioning dimension

  • Morten Aa. PetersenEmail author
  • Mogens Groenvold
  • Neil K. Aaronson
  • Wei-Chu Chie
  • Thierry Conroy
  • Anna Costantini
  • Peter Fayers
  • Jorunn Helbostad
  • Bernhard Holzner
  • Stein Kaasa
  • Susanne Singer
  • Galina Velikova
  • Teresa Young
Article

Abstract

Purpose

Computerized adaptive test (CAT) methods, based on item response theory (IRT), enable a patient-reported outcome instrument to be adapted to the individual patient while maintaining direct comparability of scores. The EORTC Quality of Life Group is developing a CAT version of the widely used EORTC QLQ-C30. We present the development and psychometric validation of the item pool for the first of the scales, physical functioning (PF).

Methods

Initial developments (including literature search and patient and expert evaluations) resulted in 56 candidate items. Responses to these items were collected from 1,176 patients with cancer from Denmark, France, Germany, Italy, Taiwan, and the United Kingdom. The items were evaluated with regard to psychometric properties.

Results

Evaluations showed that 31 of the items could be included in a unidimensional IRT model with acceptable fit and good content coverage, although the pool may lack items at the upper extreme (good PF). There were several findings of significant differential item functioning (DIF). However, the DIF findings appeared to have little impact on the PF estimation.

Conclusions

We have established an item pool for CAT measurement of PF and believe that this CAT instrument will clearly improve the EORTC measurement of PF.

Keywords

Computerized adaptive test EORTC QLQ-C30 Item banking Item response theory Physical functioning Quality of life 

Notes

Acknowledgments

The study was funded by grants from the EORTC Quality of Life Group. National Taiwan University, grant National Science Council, Taiwan, No. 95-2314-B-002-266-MY2, 97-2314-B-002-020-MY3.

References

  1. 1.
    Aaronson, N. K., Ahmedzai, S., Bergman, B., Bullinger, M., Cull, A., Duez, N. J., et al. (1993). The European Organization for research and treatment of cancer QLQ-C30: A quality-of-life instrument for use in international clinical trials in oncology. Journal of the National Cancer Institute, 85(5), 365–376.PubMedCrossRefGoogle Scholar
  2. 2.
    Fayers, P., & Bottomley, A. (2002). Quality of life research within the EORTC-the EORTC QLQ-C30. European Organisation for research and treatment of cancer. European Journal of Cancer, 38(Suppl 4), S125–S133.PubMedCrossRefGoogle Scholar
  3. 3.
    Garratt, A., Schmidt, L., Mackintosh, A., & Fitzpatrick, R. (2002). Quality of life measurement: Bibliographic study of patient assessed health outcome measures. British Medical Journal, 324(7351), 1417–1419.PubMedCrossRefGoogle Scholar
  4. 4.
    Fayers, P. M., Aaronson, N. K., Bjordal, K., Groenvold, M., Curran, D., & Bottomley, A. (2001). The EORTC QLQ-C30 scoring manual. Brussels: European Organisation for Research and Treatment of Cancer.Google Scholar
  5. 5.
    Wainer, H. (2000). Computerized adaptive testing: A primer. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  6. 6.
    Petersen, M. Aa., Groenvold, M., Aaronson, N. K., Chie, W.-C., Conroy, T., Costantini, A., et al. (2010). Development of computerised adaptive testing (CAT) for the EORTC QLQ-C30 dimensions—General approach and initial results for physical functioning. European Journal of Cancer, 46, 1352–1358.PubMedCrossRefGoogle Scholar
  7. 7.
    Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of item response theory. Newbury Park: Sage.Google Scholar
  8. 8.
    van der Linden, W. J., & Hambleton, R. K. (1997). Handbook of modern item response theory. Berlin: Springer.Google Scholar
  9. 9.
    Choi, S. W., Cook, K. F., & Dodd, B. G. (1997). Parameter recovery for the partial credit model using MULTILOG. Journal of Outcome Measurement, 1(2), 114–142.PubMedGoogle Scholar
  10. 10.
    Fayers, P. M. (2007). Applying item response theory and computer adaptive testing: The challenges for health outcomes assessment. Quality of Life Research, 16(Suppl 1), 187–194.PubMedCrossRefGoogle Scholar
  11. 11.
    Muraki, E., & Bock, R. D. (1996). PARSCALE—IRT based test scoring and item analysis for graded open-ended exercises and performance tasks. Chicago: Scientific Software International, Inc.Google Scholar
  12. 12.
    Muthen, L. K., & Muthen, B. O. (2002). Mplus user’s guide. Los Angeles, CA: Muthen & Muthen.Google Scholar
  13. 13.
    Cattell, R. B. (1966). Scree test for number of factors. Multivariate Behavioral Research, 1(2), 245–276.CrossRefGoogle Scholar
  14. 14.
    Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136–162). Newbury Park, CA: Sage.Google Scholar
  15. 15.
    Kline, R. B. (2005). Principles and practice of structural equation modeling. New York: The Guilford Press.Google Scholar
  16. 16.
    Bjorner, J. B., Kosinski, M., & Ware, J. E., Jr. (2003). Calibration of an item pool for assessing the burden of headaches: An application of item response theory to the headache impact test (HIT). Quality of Life Research, 12(8), 913–933.PubMedCrossRefGoogle Scholar
  17. 17.
    Fliege, H., Becker, J., Walter, O. B., Bjorner, J. B., Klapp, B. F., & Rose, M. (2005). Development of a computer-adaptive test for depression (D-CAT). Quality of Life Research, 14(10), 2277–2291.PubMedCrossRefGoogle Scholar
  18. 18.
    Junker, B. W., & Sijtsma, K. (2000). Latent and manifest monotonicity in item response models. Applied Psychological Measurement, 24(1), 63–79.CrossRefGoogle Scholar
  19. 19.
    Muraki, E. (1997). A generalized partial credit model. In W. J. van der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 153–168). Berlin: Springer.Google Scholar
  20. 20.
    Masters, G. N., & Wright, B. D. (1997). The partial credit model. In W. V. D. Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 101–121). Berlin: Springer.Google Scholar
  21. 21.
    Samejima, F. (1997). Graded response model. In W. V. D. Linden, & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 85–100).Google Scholar
  22. 22.
    Maydeuolivares, A., Drasgow, F., & Mead, A. D. (1994). Distinguishing among parametric item response models for polychotomous ordered data. Applied Psychological Measurement, 18(3), 245–256.CrossRefGoogle Scholar
  23. 23.
    Hanson, B. A. (2009). IRT command language (ICL) program http://www.b-a-h.com/software/irt/icl. Accessed June 2009.
  24. 24.
    Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society Series B-Methodological, 39, 1–22.Google Scholar
  25. 25.
    Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46(4), 443–459.CrossRefGoogle Scholar
  26. 26.
    French, A. W., & Miller, T. R. (1996). Logistic regression and its use in detecting differential item functioning in polytomous items. Journal of Educational Measurement, 33(3), 315–332.CrossRefGoogle Scholar
  27. 27.
    Petersen, M. A., Groenvold, M., Bjorner, J. B., Aaronson, N. K., Conroy, T., Cull, A., et al. (2003). Use of differential item functioning analysis to assess the equivalence of translations of a questionnaire. Quality of Life Research, 12(4), 373–385.PubMedCrossRefGoogle Scholar
  28. 28.
    Bjorner, J. B., Kreiner, S., Ware, J. E., Damsgaard, M. T., & Bech, P. (1998). Differential item functioning in the Danish translation of the SF-36. Journal of Clinical Epidemiology, 51(11), 1189–1202.PubMedCrossRefGoogle Scholar
  29. 29.
    Gierl, M. J., Rogers, W. T., & Klinger, D. A. (1999). Using statistical and judgmental reviews to identify and interpret translation differential item functioning. Alberta Journal of Educational Research, 45(4), 353–376.Google Scholar
  30. 30.
    Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78(3), 691–692.CrossRefGoogle Scholar
  31. 31.
    Scott, N. W., Fayers, P. M., Aaronson, N. K., Bottomley, A., de Graeff, A., Groenvold, M., et al. (2009). The practical impact of differential item functioning analyses in a health-related quality of life instrument. Quality of Life Research, 18(8), 1125–1130.PubMedCrossRefGoogle Scholar
  32. 32.
    Hart, D. L., Deutscher, D., Crane, P. K., & Wang, Y. C. (2009). Differential item functioning was negligible in an adaptive test of functional status for patients with knee impairments who spoke English or Hebrew. Quality of Life Research, 18(8), 1067–1083.PubMedCrossRefGoogle Scholar
  33. 33.
    SAS Institute Inc. (2004). SAS/STAT ® 9.1 user’s guide. Cary, NC: SAS Institute Inc.Google Scholar
  34. 34.
    Scott, N. W., Fayers, P. M., Bottomley, A., Aaronson, N. K., de Graeff, A., Groenvold, M., et al. (2006). Comparing translations of the EORTC QLQ-C30 using differential item functioning analyses. Quality of Life Research, 15(6), 1103–1115.PubMedCrossRefGoogle Scholar
  35. 35.
    Revicki D. A., Chen, W. H., Harnam, N., Cook, K. F., Amtmann, D., Callahan, L. F., et al. (2009). Development and psychometric analysis of the PROMIS pain behavior item bank. Pain.Google Scholar
  36. 36.
    Helbostad, J. L., Holen, J. C., Jordhoy, M. S., Ringdal, G. I., Oldervoll, L., & Kaasa, S. (2009). A first step in the development of an international self-report instrument for physical functioning in palliative cancer care: A systematic literature review and an expert opinion evaluation study. Journal of Pain and Symptom Management, 37(2), 196–205.PubMedCrossRefGoogle Scholar
  37. 37.
    Haley, S. M., Ni, P., Hambleton, R. K., Slavin, M. D., & Jette, A. M. (2006). Computer adaptive testing improved accuracy and precision of scores over random item selection in a physical functioning item bank. Journal of Clinical Epidemiology, 59(11), 1174–1182.PubMedCrossRefGoogle Scholar
  38. 38.
    Haley, S. M., Fragala-Pinkham, M. A., Dumas, H. M., Ni, P., Gorton, G. E., Watson, K., et al. (2009). Evaluation of an item bank for a computerized adaptive test of activity in children with cerebral palsy. Physical Therapy, 89(6), 589–600.PubMedCrossRefGoogle Scholar
  39. 39.
    Hart, D. L., Wang, Y. C., Stratford, P. W., & Mioduski, J. E. (2008). Computerized adaptive test for patients with foot or ankle impairments produced valid and responsive measures of function. Quality of Life Research, 17(8), 1081–1091.PubMedCrossRefGoogle Scholar
  40. 40.
    Hart, D. L., Cook, K. F., Mioduski, J. E., Teal, C. R., & Crane, P. K. (2006). Simulated computerized adaptive test for patients with shoulder impairments was efficient and produced valid measures of function. Journal of Clinical Epidemiology, 59(3), 290–298.PubMedCrossRefGoogle Scholar
  41. 41.
    Hart, D. L., Mioduski, J. E., Werneke, M. W., & Stratford, P. W. (2006). Simulated computerized adaptive test for patients with lumbar spine impairments was efficient and produced valid measures of function. Journal of Clinial Epidemiology., 59(9), 947–956.CrossRefGoogle Scholar
  42. 42.
    Fries, J. F., Cella, D., Rose, M., Krishnan, E., & Bruce, B. (2009). Progress in assessing physical function in arthritis: PROMIS short forms and computerized adaptive testing. Journal of Rheumatology, 36(9), 2061–2066.PubMedCrossRefGoogle Scholar
  43. 43.
    Rose, M., Bjorner, J. B., Becker, J., Fries, J. F., & Ware, J. E. (2008). Evaluation of a preliminary physical function item bank supports the expected advantages of the patient-reported outcomes measurement information system (PROMIS). Journal of Clinical Epidemiology, 61(1), 17–33.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Morten Aa. Petersen
    • 1
    Email author
  • Mogens Groenvold
    • 1
    • 2
  • Neil K. Aaronson
    • 3
  • Wei-Chu Chie
    • 4
  • Thierry Conroy
    • 5
  • Anna Costantini
    • 6
  • Peter Fayers
    • 7
    • 8
  • Jorunn Helbostad
    • 9
  • Bernhard Holzner
    • 10
  • Stein Kaasa
    • 11
  • Susanne Singer
    • 12
  • Galina Velikova
    • 13
  • Teresa Young
    • 14
  1. 1.The Research Unit, Department of Palliative MedicineBispebjerg HospitalCopenhagen NVDenmark
  2. 2.Institute of Public HealthUniversity of CopenhagenCopenhagenDenmark
  3. 3.Division of Psychosocial Research and EpidemiologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
  4. 4.Graduate Institute of Preventive Medicine and Department of Public Health, College of Public HealthNational Taiwan UniversityTaipeiTaiwan
  5. 5.Medical Oncology DepartmentCentre Alexis VautrinVandoeuvre-lès-NancyFrance
  6. 6.Psychoncology Unit, Sant’Andrea Hospital, 2nd Faculty of MedicineSapienza University of RomeRomeItaly
  7. 7.Department of Public HealthUniversity of AberdeenAberdeenUK
  8. 8.Department of Cancer Research and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
  9. 9.Department of NeuroscienceNorwegian University of Science and Technology and St. Olav University HospitalTrondheimNorway
  10. 10.Department of Psychiatry and PsychotherapyMedical University InnsbruckInnsbruckAustria
  11. 11.Palliative Medicine UnitUniversity Hospital of TrondheimTrondheimNorway
  12. 12.Department Medical Psychology and Medical SociologyUniversity of LeipzigLeipzigGermany
  13. 13.Cancer Research UK CentreUniversity of LeedsLeedsUK
  14. 14.Lynda Jackson Macmillan CentreMount Vernon Cancer CentreNorthwoodUK

Personalised recommendations