Quality of Life Research

, Volume 19, Issue 6, pp 853–864 | Cite as

Discriminative capacity of the EQ-5D, SF-6D, and SF-12 as measures of health status in population health survey

  • Oriol Cunillera
  • Ricard Tresserras
  • Luis Rajmil
  • Gemma Vilagut
  • Pilar Brugulat
  • Mike Herdman
  • Anna Mompart
  • Antonia Medina
  • Yolanda Pardo
  • Jordi Alonso
  • John Brazier
  • Montse Ferrer



To compare the EQ-5D, SF-6D, and SF-12 in terms of their capacity to discriminate between groups defined by relevant socio-demographic and health characteristics in a general population survey.


Data were obtained from the 2006 Catalan Health Interview Survey, a representative sample (n = 4,319) of the general population of Catalonia (Spain). Effect sizes (ES) and Receiver Operating Characteristic (ROC) curves were calculated to evaluate the instruments’ capacity to distinguish between groups based on socio-demographic variables, recent health problems, perceived health, psychological distress, and selected chronic conditions.


All instruments showed a similar discriminative capacity between groups based on socio-demographic variables, recent medical visit (ES = 0.47–0.55), activity limitations (ES = 0.92–0.98), perceived health (ES = 0.97–1.33), and psychological well-being (ES = 1.17–1.57). Effect sizes between respondents with and without any of fourteen selected chronic conditions were large (0.76–1.04) for 4, moderate (0.55–0.74) for 8, and small (0.17–0.39) for two on the EQ-5D index. A similar pattern was observed for the SF-12 but ES were predominantly moderate (7 conditions) or small (6 conditions) on the SF-6D.


The EQ-5D and SF-12 were largely comparable in estimating the health burden of chronic conditions, recent health problems, and social inequalities. The SF-6D was less sensitive than the EQ-5D index and SF-12, particularly for physical chronic conditions.


Mental Component Summary Chronic Physical Condition Problem Effect Size Specific Chronic Condition Chronic Allergy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Scientific Advisory Committee of the Medical Outcomes Trust. (2002). Assessing health status and quality-of-life instruments: Attributes and review criteria. Quality of Life Research, 11(3), 193–205.CrossRefGoogle Scholar
  2. 2.
    Macran, S., Weatherly, H., & Kind, P. (2003). Measuring population health: A comparison of three generic health status measures. Medical Care, 41(2), 218–231.CrossRefPubMedGoogle Scholar
  3. 3.
    Fitzpatrick, R., Fletcher, A., Gore, S., Jones, D., Spiegelhalter, D., & Cox, D. (1992). Quality of life measures in health care. I: Applications and issues in assessment. British Medical Journal, 305(6861), 1074–1077.CrossRefPubMedGoogle Scholar
  4. 4.
    Luo, N., Johnson, J. A., Shaw, J. W., Feeny, D., & Coons, S. J. (2005). Self-reported health status of the general adult U.S. population as assessed by the EQ-5D and Health Utilities Index. Medical Care, 43(11), 1078–1086.CrossRefPubMedGoogle Scholar
  5. 5.
    Kind, P., Dolan, P., Gudex, C., & Williams, A. (1998). Variations in population health status: Results from a United Kingdom national questionnaire survey. British Medical Journal, 316(7133), 736–741.PubMedGoogle Scholar
  6. 6.
    Johnson, J. A., & Pickard, A. S. (2000). Comparison of the EQ-5D and SF-12 health surveys in a general population survey in Alberta, Canada. Medical Care, 38(1), 115–121.CrossRefPubMedGoogle Scholar
  7. 7.
    Devlin, N., Hansen, P., & Herbison, P. (2000). Variations in self-reported health status: Results from a New Zealand survey. The New Zealand Medical Journal, 113(1123), 517–520.PubMedGoogle Scholar
  8. 8.
    Burstrom, K., Johannesson, M., & Rehnberg, C. (2007). Deteriorating health status in Stockholm 1998–2002: Results from repeated population surveys using the EQ-5D. Quality of Life Research, 16(9), 1547–1553.CrossRefPubMedGoogle Scholar
  9. 9.
    Saarni, S. I., Harkanen, T., Sintonen, H., Suvisaari, J., Koskinen, S., Aromaa, A., et al. (2006). The impact of 29 chronic conditions on health-related quality of life: A general population survey in Finland using 15D and EQ-5D. Quality of Life Research, 15(8), 1403–1414.CrossRefPubMedGoogle Scholar
  10. 10.
    Shin, H., & Kim, D. (2008). Health inequality measurement in Korea using EuroQol-5 dimension valuation weights. Journal of Preventive Medicine and Public Health, 41(3), 165–172.CrossRefPubMedGoogle Scholar
  11. 11.
    Dolan, P. (1997). Modeling valuations for EuroQol health states. Medical Care, 35(11), 1095–1108.CrossRefPubMedGoogle Scholar
  12. 12.
    Petrou, S., & Hockley, C. (2005). An investigation into the empirical validity of the EQ-5D and SF-6D based on hypothetical preferences in a general population. Health Economics, 14(11), 1169–1189.CrossRefPubMedGoogle Scholar
  13. 13.
    Han, T. S., Tijhuis, M. A., Lean, M. E., & Seidell, J. C. (1998). Quality of life in relation to overweight and body fat distribution. American Journal of Public Health, 88(12), 1814–1820.CrossRefPubMedGoogle Scholar
  14. 14.
    Silvers, K. M., & Scott, K. M. (2002). Fish consumption and self-reported physical and mental health status. Public Health Nutrition, 5(3), 427–431.CrossRefPubMedGoogle Scholar
  15. 15.
    Schmitz, N., & Kruse, J. (2007). The SF-36 summary scores and their relation to mental disorders: Physical functioning may affect performance of the summary scores. Journal of Clinical Epidemiology, 60(2), 163–170.CrossRefPubMedGoogle Scholar
  16. 16.
    Ware, J., Jr., Kosinski, M., & Keller, S. D. (1996). A 12-item short-form health survey: Construction of scales and preliminary tests of reliability and validity. Medical Care, 34(3), 220–233.CrossRefPubMedGoogle Scholar
  17. 17.
    Brazier, J., Roberts, J., & Deverill, M. (2002). The estimation of a preference-based measure of health from the SF-36. Journal of Health Economics, 21(2), 271–292.CrossRefPubMedGoogle Scholar
  18. 18.
    Brazier, J. E., & Roberts, J. (2004). The estimation of a preference-based measure of health from the SF-12. Medical Care, 42(9), 851–859.CrossRefPubMedGoogle Scholar
  19. 19.
    Stucki, G., Liang, M. H., Fossel, A. H., & Katz, J. N. (1995). Relative responsiveness of condition-specific and generic health status measures in degenerative lumbar spinal stenosis. Journal of Clinical Epidemiology, 48(11), 1369–1378.CrossRefPubMedGoogle Scholar
  20. 20.
    Walters, S. J., & Brazier, J. E. (2005). Comparison of the minimally important difference for two health state utility measures: EQ-5D and SF-6D. Quality of Life Research, 14(6), 1523–1532.CrossRefPubMedGoogle Scholar
  21. 21.
    Barton, G. R., Bankart, J., Davis, A. C., & Summerfield, Q. A. (2004). Comparing utility scores before and after hearing-aid provision: Results according to the EQ-5D, HUI3 and SF-6D. Appl Health Econ Health Policy, 3(2), 103–105.CrossRefPubMedGoogle Scholar
  22. 22.
    Fisk, J. D., Brown, M. G., Sketris, I. S., Metz, L. M., Murray, T. J., & Stadnyk, K. J. (2005). A comparison of health utility measures for the evaluation of multiple sclerosis treatments. Journal of Neurology, Neurosurgery and Psychiatry, 76(1), 58–63.CrossRefGoogle Scholar
  23. 23.
    Lamers, L. M., Bouwmans, C. A., van Straten, A., Donker, M. C., & Hakkaart, L. (2006). Comparison of EQ-5D and SF-6D utilities in mental health patients. Health Economics, 15(11), 1229–1236.CrossRefPubMedGoogle Scholar
  24. 24.
    Marra, C. A., Woolcott, J. C., Kopec, J. A., Shojania, K., Offer, R., Brazier, J. E., et al. (2005). A comparison of generic, indirect utility measures (the HUI2, HUI3, SF-6D, and the EQ-5D) and disease-specific instruments (the RAQoL and the HAQ) in rheumatoid arthritis. Social Science and Medicine, 60(7), 1571–1582.CrossRefPubMedGoogle Scholar
  25. 25.
    Stavem, K., Froland, S. S., & Hellum, K. B. (2005). Comparison of preference-based utilities of the 15D, EQ-5D and SF-6D in patients with HIV/AIDS. Quality of Life Research, 14(4), 971–980.CrossRefPubMedGoogle Scholar
  26. 26.
    van Stel, H. F., & Buskens, E. (2006). Comparison of the SF-6D and the EQ-5D in patients with coronary heart disease. Health and Quality of Life Outcomes, 4, 20–28.CrossRefPubMedGoogle Scholar
  27. 27.
    Russell, A. S., Conner-Spady, B., Mintz, A., & Maksymowych, W. P. (2003). The responsiveness of generic health status measures as assessed in patients with rheumatoid arthritis receiving infliximab. The Journal of Rheumatology, 30(5), 941–947.PubMedGoogle Scholar
  28. 28.
    Conner-Spady, B., & Suarez-Almazor, M. E. (2003). Variation in the estimation of quality-adjusted life-years by different preference-based instruments. Medical Care, 41(7), 791–801.CrossRefPubMedGoogle Scholar
  29. 29.
    Harrison, M. J., Davies, L. M., Bansback, N. J., McCoy, M. J., Verstappen, S. M., Watson, K., et al. (2009). The comparative responsiveness of the EQ-5D and SF-6D to change in patients with inflammatory arthritis. Quality of Life Research, 18(9), 1195–1205.CrossRefPubMedGoogle Scholar
  30. 30.
    Johnson, J. A., & Coons, S. J. (1998). Comparison of the EQ-5D and SF-12 in an adult US sample. Quality of Life Research, 7(2), 155–166.CrossRefPubMedGoogle Scholar
  31. 31.
    Bharmal, M., Thomas, J., & II, I. (2006). Comparing the EQ-5D and the SF-6D descriptive systems to assess their ceiling effects in the US general population. Value in Health, 9(4), 262–271.CrossRefPubMedGoogle Scholar
  32. 32.
    Kontodimopoulos, N., Pappa, E., Niakas, D., & Tountas, Y. (2007). Validity of SF-12 summary scores in a Greek general population. Health and Quality of Life Outcomes, 5, 55–63.CrossRefPubMedGoogle Scholar
  33. 33.
    Borrell, C., Fernandez, E., Schiaffino, A., Benach, J., Rajmil, L., Villalbi, J. R., et al. (2001). Social class inequalities in the use of and access to health services in Catalonia, Spain: What is the influence of supplemental private health insurance? International Journal for Quality in Health Care, 13(2), 117–125.CrossRefPubMedGoogle Scholar
  34. 34.
    Artazcoz, L., Benach, J., Borrell, C., & Cortes, I. (2005). Social inequalities in the impact of flexible employment on different domains of psychosocial health. Journal of Epidemiology and Community Health, 59(9), 761–767.CrossRefPubMedGoogle Scholar
  35. 35.
    Rue, M., Carles, M., Vilaprinyo, E., Martinez-Alonso, M., Espinas, J. A., Pla, R., et al. (2008). Dissemination of periodic mammography and patterns of use, by birth cohort, in Catalonia (Spain). BMC Cancer, 8, 336–346.CrossRefPubMedGoogle Scholar
  36. 36.
    IDESCAT. (2008). Official Catalan Institute of Statistics. Available at: Accessed October 20, 2008.
  37. 37.
    Brooks, R., & The EuroQol Group. (1996). EuroQol: The current state of play. Health Policy, 37(1), 53–72.CrossRefPubMedGoogle Scholar
  38. 38.
    Badia, X., Schiaffino, A., Alonso, J., & Herdman, M. (1998). Using the EuroQol 5-D in the Catalan general population: Feasibility and construct validity. Quality of Life Research, 7(4), 311–322.CrossRefPubMedGoogle Scholar
  39. 39.
    Ware, J. E., Jr., Kosinski, M., Turner-Bowker, D. M., & Gandek, B. (2002). How to score version 2 of the SF-12 Health Survey (with a supplement documenting version 1). Lincoln, RI: QualityMetric, Inc.Google Scholar
  40. 40.
    Vilagut, G., Ferrer, M., Rajmil, L., Rebollo, P., Permanyer-Miralda, G., Quintana, J. M., et al. (2005). El cuestionario de salud SF-36 español: una década de experiencia y nuevos desarrollos. Gaceta Sanitaria, 19(2), 135–150.CrossRefPubMedGoogle Scholar
  41. 41.
    Alonso, J., Anto, J. M., & Moreno, C. (1990). Spanish version of the Nottingham Health Profile: Translation and preliminary validity. American Journal of Public Health, 80(6), 704–708.CrossRefPubMedGoogle Scholar
  42. 42.
    Emery, C. F., Frid, D. J., Engebretson, T. O., Alonzo, A. A., Fish, A., Ferketich, A. K., et al. (2004). Gender differences in quality of life among cardiac patients. Psychosomatic Medicine, 66(2), 190–197.CrossRefPubMedGoogle Scholar
  43. 43.
    Michelson, H., Bolund, C., Nilsson, B., & Brandberg, Y. (2000). Health-related quality of life measured by the EORTC QLQ-C30–reference values from a large sample of Swedish population. Acta Oncologica, 39(4), 477–484.CrossRefPubMedGoogle Scholar
  44. 44.
    Power, M., Quinn, K., & Schmidt, S. (2005). Development of the WHOQOL-old module. Quality of Life Research, 14(10), 2197–2214.CrossRefPubMedGoogle Scholar
  45. 45.
    Starfield, B. (2006). State of the art in research on equity in health. Journal of Health Politics, Policy and Law, 31(1), 11–32.CrossRefPubMedGoogle Scholar
  46. 46.
    Domingo-Salvany, A., Regidor, E., Alonso, J., & Alvarez-Dardet, C. (2000). Una propuesta de medida de la clase social. Grupo de Trabajo de la Sociedad Espanola de Epidemiologia y de la Sociedad Española de Medicina de Familia y Comunitaria. Atencion Primaria, 25(5), 350–363.PubMedGoogle Scholar
  47. 47.
    Goldberg, D. P., & Williams, P. (1988). A user’s guide to the General Health Questionnaire. London: Institute of Psychiatry.Google Scholar
  48. 48.
    Gispert, R., Rajmil, L., Schiaffino, A., & Herdman, M. (2003). Sociodemographic and health-related correlates of psychiatric distress in a general population. Social Psychiatry and Psychiatric Epidemiology, 38(12), 677–683.CrossRefPubMedGoogle Scholar
  49. 49.
    Research Triangle Institute. (2004). SUDAAN language manual, release 9.0. North Carolina, EEUU: Research Triangle Institute, NC. Available at:
  50. 50.
    Hedges, L. V., & Olkin, I. (1985). Estimation of a single effect size: Parametric and non parametric methods. In Statistical methods for meta-analysis (pp. 75–106). Orlando, FL: Academic Press.Google Scholar
  51. 51.
    Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Elrbaum Associates.Google Scholar
  52. 52.
    Kazis, L. E., Anderson, J. J., & Meenan, R. F. (1989). Effect sizes for interpreting changes in health status. Medical Care, 27(3 suppl), S178–S189.CrossRefPubMedGoogle Scholar
  53. 53.
    Osborne, R. H., Hawthorne, G., Lew, E. A., & Gray, L. C. (2003). Quality of life assessment in the community-dwelling elderly: Validation of the assessment of quality of life (AQoL) instrument and comparison with the SF-36. Journal of Clinical Epidemiology, 56(2), 138–147.CrossRefPubMedGoogle Scholar
  54. 54.
    McHorney, C. A., & Tarlov, A. R. (1995). Individual-patient monitoring in clinical practice: Are available health status surveys adequate? Quality of Life Research, 4(4), 293–307.CrossRefPubMedGoogle Scholar
  55. 55.
    Bansback, N., Sun, H., Guh, D. P., Li, X., Nosyk, B., Griffin, S., et al. (2008). Impact of the recall period on measuring health utilities for acute events. Health Economics, 17(12), 1413–1419.CrossRefPubMedGoogle Scholar
  56. 56.
    Badia, X., Roset, M., Herdman, M., & Kind, P. (2001). A comparison of United Kingdom and Spanish general population time trade-off values for EQ-5D Health States. Medical Decision Making, 21(1), 7–16.CrossRefPubMedGoogle Scholar
  57. 57.
    Mathers, C. D., Sadana, R., Salomon, J. A., Murray, C. J., & Lopez, A. D. (2001). Healthy life expectancy in 191 countries, 1999. The Lancet, 357(9269), 1685–1691.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Oriol Cunillera
    • 1
    • 2
  • Ricard Tresserras
    • 3
  • Luis Rajmil
    • 1
    • 2
    • 4
  • Gemma Vilagut
    • 1
    • 2
  • Pilar Brugulat
    • 3
  • Mike Herdman
    • 1
    • 2
  • Anna Mompart
    • 3
  • Antonia Medina
    • 3
  • Yolanda Pardo
    • 2
  • Jordi Alonso
    • 1
    • 2
    • 5
  • John Brazier
    • 6
  • Montse Ferrer
    • 7
    • 8
    • 9
  1. 1.CIBER en Epidemiología y Salud Pública (CIBERESP)BarcelonaSpain
  2. 2.Institut Municipal d’Investigació Mèdica (IMIM-Hospital del Mar), Health Services Research UnitBarcelonaSpain
  3. 3.Direcció General de Planificació i Avaluació del Departament de Salut de la Generalitat de CatalunyaBarcelonaSpain
  4. 4.Catalan Agency for Health Technology Assessment and ResearchBarcelonaSpain
  5. 5.Universitat Pompeu FabraBarcelonaSpain
  6. 6.Sheffield Health Economics GroupUniversity of SheffieldSheffieldUK
  7. 7.Institut Municipal d’Investigació Mèdica (IMIM-Hospital del Mar), Research Unit (IMIM-Hospital del Mar)BarcelonaSpain
  8. 8.CIBER en Epidemiología y Salud Pública (CIBERESP), Health ServicesBarcelonaSpain
  9. 9.Universitat Autònoma de BarcelonaBarcelonaSpain

Personalised recommendations