Quality of Life Research

, Volume 18, Issue 10, pp 1357–1366 | Cite as

Psychometric properties of the Patient Activation Measure among individuals presenting for elective lumbar spine surgery

  • Richard L. Skolasky
  • Ellen J. Mackenzie
  • Lee H. RileyIII
  • Stephen T. Wegener
Article

Abstract

Background

An individual’s propensity to engage in adaptive health and rehabilitation behaviors may account for variation in postsurgical outcome.

Purpose

To determine the psychometric properties and construct validity of the recently developed Patient Activation Measure (PAM) (previously unused in spine research) in persons undergoing elective lumbar spine surgery.

Methods

We prospectively used the PAM to assess activation in 283 patients undergoing elective lumbar spine surgery. Reliability statistics were computed using repeated assessment (baseline and 1-week follow-up) before surgery. Additional psychological attributes were assessed at baseline and correlated with patient activation. Factor analysis was used to confirm the theoretical structure of patient activation.

Results

Repeat PAM administrations had an intraclass correlation coefficient of 0.85. The PAM showed positive correlation with optimism (r = 0.75), hope (r = 0.73), self-efficacy (r = 0.65), and internal locus of control (r = 0.65) but no correlation with comorbidity (r = 0.01). Confirmatory factor analysis of the PAM items indicated reasonable fit between observed data and a three-factor patient activation model.

Conclusions

The PAM is a reliable, valid measure of patient activation for individuals undergoing elective lumbar spine surgery and may have clinical utility in identifying those at risk for poor engagement in postsurgical rehabilitation.

Keywords

Patient Activation Measure Validation Lumbar spine surgery 

Abbreviations

CFI

Bentler’s Comparative Fit Index

CI

Confidence interval

DF

Degrees of freedom

ECVI

Expected Cross-Validation Index

GFI

Goodness-of-Fit Index

LOT-R

Life Orientation Test—Revised

MHLC

Multidimensional Health Locus of Control

MMSE

Mini-Mental Status Examination

NFI

Normed Fit Index

PA

Patient activation

PAM

Patient Activation Measure

RMSR

Root mean square residual

SD

Standard deviation

SEPT

Self-efficacy to participate in physical therapy

Notes

Acknowledgments

This project was supported by grant number 1 R03 HS016106 from the Agency for Healthcare Research and Quality.

References

  1. 1.
    Junge, A., Frohlich, M., Ahrens, S., Hasenbring, M., Sandler, A. J., Grob, D., et al. (1996). Predictors of bad and good outcome of lumbar spine surgery: A prospective clinical study with 2 years’ follow-up. Spine, 21(9), 1056–1064.CrossRefPubMedGoogle Scholar
  2. 2.
    Turner, J. A., Ersek, M., Herron, L., & Deyo, R. (1992). Surgery for lumbar spinal stenosis. Attempted meta-analysis of the literature. Spine, 17(1), 1–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Shabat, S., Leitner, Y., Nyska, M., Berner, Y., Fredman, B., & Gepstein, R. (2002). Surgical treatment of lumbar spinal stenosis in patients aged 65 years and older. Archives of Gerontology and Geriatrics, 35(2), 143–152.CrossRefPubMedGoogle Scholar
  4. 4.
    Goldman, L. (1983). Cardiac risks and complications of noncardiac surgery. Annals of Internal Medicine, 98(4), 504–513.PubMedGoogle Scholar
  5. 5.
    Johnson, J. C. (1988). Surgical assessment in the elderly. Geriatrics, 43(Suppl), 83–89; discussion 90.Google Scholar
  6. 6.
    Ergina, P. L., Gold, S. L., & Meakins, J. L. (1993). Perioperative care of the elderly patient. World Journal of Surgery, 17(2), 192–198.CrossRefPubMedGoogle Scholar
  7. 7.
    Navarro, V. (1990). Race or class versus race and class: Mortality differentials in the United States. Lancet, 336(8725), 1238–1240.CrossRefPubMedGoogle Scholar
  8. 8.
    Braithwaite, R. L., & Taylor, S. E. (Eds.). (1992). Health issues in the Black community. San Francisco: Jossey-Bass.Google Scholar
  9. 9.
    Furino, A. (1992). Health policy and the hispanic. Boulder, CO: Westview Press.Google Scholar
  10. 10.
    Livingston, I. L. (Ed.). (1994). Handbook of Black American health: The Mosaic of conditions, issues, policies, and prospects. Westport, CT: Greenwood Press.Google Scholar
  11. 11.
    Selim, A. J., Fincke, G., Ren, X. S., Deyo, R. A., Lee, A., Skinner, K., et al. (2001). Racial differences in the use of lumbar spine radiographs. Results from the Veterans Health Study. Spine, 26(12), 1364–1369.CrossRefPubMedGoogle Scholar
  12. 12.
    Grant, M. D., & Herman, S. (2004). Ethnic and geographic variation in gastrostomy placement among hospitalized older patients. Journal of the National Medical Association, 96(10), 1346–1349.PubMedGoogle Scholar
  13. 13.
    Andreshak, T. G., An, H. S., Hall, J., & Stein, B. (1997). Lumbar spine surgery in the obese patient. Journal of Spinal Disorders & Techniques, 10(5), 376–379.CrossRefGoogle Scholar
  14. 14.
    Telfeian, A. E., Reiter, G. T., Durham, S. R., & Marcotte, P. (2002). Spine surgery in morbidly obese patients. Journal of Neurosurgery: Spine, 97(1), 20–24.CrossRefGoogle Scholar
  15. 15.
    Olsen, M. A., Mayfield, J., Lauryssen, C., Polish, L. B., Jones, M., Vest, J., et al. (2003). Risk factors for surgical site infection in spinal surgery. Journal of Neurosurgery, 98(2), 149–155.PubMedGoogle Scholar
  16. 16.
    Adler, N. E., Boyce, W. T., Chesney, M. A., Folkman, S., & Syme, S. L. (1993). Socioeconomic inequalities in health. No easy solution. JAMA, 269(24), 3140–3145.CrossRefPubMedGoogle Scholar
  17. 17.
    Adler, N. E., Boyce, T., Chesney, M. A., Cohen, S., Folkman, S., Kahn, R. L., et al. (1994). Socioeconomic status and health. The challenge of the gradient. American Psychologist, 49(1), 15–24.CrossRefPubMedGoogle Scholar
  18. 18.
    Laxton, A. W., & Perrin, R. G. (2003). The relations between social support, life stress, and quality of life following spinal decompression surgery. Spinal Cord, 41(10), 553–558.CrossRefPubMedGoogle Scholar
  19. 19.
    Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4(6), 561–571.PubMedGoogle Scholar
  20. 20.
    Katz, J. N., Stucki, G., Lipson, S. J., Fossel, A. H., Grobler, L. J., & Weinstein, J. N. (1999). Predictors of surgical outcome in degenerative lumbar spinal stenosis. Spine, 24(21), 2229–2233.CrossRefPubMedGoogle Scholar
  21. 21.
    Kjellby-Wendt, G., Styf, J. R., & Carlsson, S. G. (1999). The predictive value of psychometric analysis in patients treated by extirpation of lumbar intervertebral disc herniation. Journal of Spinal Disorders & Techniques, 12(5), 375–379.Google Scholar
  22. 22.
    Schade, V., Semmer, N., Main, C. J., Hora, J., & Boos, N. (1999). The impact of clinical, morphological, psychosocial and work-related factors on the outcome of lumbar discectomy. Pain, 80(1–2), 239–249.CrossRefPubMedGoogle Scholar
  23. 23.
    Trief, P. M., Grant, W., & Fredrickson, B. (2000). A prospective study of psychological predictors of lumbar surgery outcome. Spine, 25(20), 2616–2621.CrossRefPubMedGoogle Scholar
  24. 24.
    Dvorak, J., Gauchat, M. H., & Valach, L. (1988). The outcome of surgery for lumbar disc herniation. I. A 4–17 years’ follow-up with emphasis on somatic aspects. Spine, 13(12), 1418–1422.CrossRefPubMedGoogle Scholar
  25. 25.
    Dvorak, J., Valach, L., Fuhrimann, P., & Heim, E. (1988). The outcome of surgery for lumbar disc herniation. II. A 4–17 years’ follow-up with emphasis on psychosocial aspects. Spine, 13(12), 1423–1427.CrossRefPubMedGoogle Scholar
  26. 26.
    White, A. H., Rothman, R. H., & Ray, C. D. (Eds.). (1987). Lumbar spine surgery. Techniques and Complications. St. Louis: C.V. Mosby Co.Google Scholar
  27. 27.
    Fritzell, P., Hagg, O., Wessberg, P., Nordwall, A., & Swedish Lumbar Spine Study Group. (2002). Chronic low back pain and fusion: a comparison of three surgical techniques. A prospective multicenter randomized study from the Swedish Lumbar Spine Study Group. Spine, 27(11), 1131–1141.CrossRefPubMedGoogle Scholar
  28. 28.
    Mannion, A. F., Elfering, A., Staerkle, R., Junge, A., Grob, D., Dvorak, J., et al. (2007). Predictors of multidimensional outcome after spinal surgery. European Spine Journal, 16(6), 777–786.CrossRefPubMedGoogle Scholar
  29. 29.
    Von Korff, M., Gruman, J., Schaefer, J., Curry, S. J., & Wagner, E. H. (1997). Collaborative management of chronic illness. Annals of Internal Medicine, 127(12), 1097–1102.Google Scholar
  30. 30.
    Hibbard, J. H., Stockard, J., Mahoney, E. R., & Tusler, M. (2004). Development of the patient activation measure (PAM): Conceptualizing and measuring activation in patients and consumers. Health Services Research, 39(4), 1005–1026.CrossRefPubMedGoogle Scholar
  31. 31.
    Williams, G. C., McGregor, H. A., Zeldman, A., Freedman, Z. R., & Deci, E. L. (2004). Testing a self-determination theory process model for promoting glycemic control through diabetes self-management. Health Psychology, 23(1), 58–66.CrossRefPubMedGoogle Scholar
  32. 32.
    Williams, G. C., McGregor, H., Zeldman, A., Freedman, Z. R., Deci, E. L., & Elder, D. (2005). Promoting glycemic control through diabetes self-management: evaluating a patient activation intervention. Patient Education and Counseling, 56(1), 28–34.CrossRefPubMedGoogle Scholar
  33. 33.
    Skolasky, R. L., MacKenzie, E. J., Wegener, S. T., & Riley, L. H., III. (2008). Patient activation and adherence to physical therapy in persons undergoing spine surgery. Spine, 33(21), E784–E791.PubMedCrossRefGoogle Scholar
  34. 34.
    Eichholz, K. M., & Ryken, T. C. (2003). Complications of revision spinal surgery. Neurosurgical Focus, 15(3), E1–E4.CrossRefPubMedGoogle Scholar
  35. 35.
    Fritzell, P., Hagg, O., Nordwall, A., & Swedish Lumbar Spine Study Group. (2003). Complications in lumbar fusion surgery for chronic low back pain: Comparison of three surgical techniques used in a prospective randomized study. A report from the Swedish Lumbar Spine Study Group. European Spine Journal, 12(2), 178–189.PubMedGoogle Scholar
  36. 36.
    Hibbard, J. H., Mahoney, E. R., Stockard, J., & Tusler, M. (2005). Development and testing of a short form of the Patient Activation Measure. Health Services Research, 40(6), 1918–1930.CrossRefPubMedGoogle Scholar
  37. 37.
    Carver, C. S., & Scheier, M. F. (2005). Optimism. In C. R. Snyder & S. J. Lopez (Eds.), Handbook of positive psychology (pp. 231–243). New York: Oxford University Press.Google Scholar
  38. 38.
    Taylor, S. E., Kemeny, M. E., Aspinwall, L. G., Schneider, S. G., Rodriguez, R., & Herbert, M. (1992). Optimism, coping, psychological distress, and high-risk sexual behavior among men at risk for acquired immunodeficiency syndrome (AIDS). Journal of Personality and Social Psychology, 63(3), 460–473.CrossRefPubMedGoogle Scholar
  39. 39.
    Scheier, M. F., Carver, C. S., & Bridges, M. W. (1994). Distinguishing optimism from neuroticism (and trait anxiety, self-mastery, and self-esteem): A reevaluation of the life orientation test. Journal of Personality and Social Psychology, 67(6), 1063–1078.CrossRefPubMedGoogle Scholar
  40. 40.
    Scheier, M. F., & Carver, C. S. (1985). Optimism, coping, and health: Assessment and implications of generalized outcome expectancies. Health Psychology, 4(3), 219–247.CrossRefPubMedGoogle Scholar
  41. 41.
    Snyder, C. R., Rand, K. L., & Sigmon, D. R. (2005). Hope theory. A member of the positive psychology family. In C. R. Snyder & S. J. Lopez (Eds.), Handbook of positive psychology (pp. 257–276). New York: Oxford University Press.Google Scholar
  42. 42.
    Snyder, C. R., Harris, C., Anderson, J. R., Holleran, S. A., Irving, L. M., Sigmon, S. T., et al. (1991). The will and the ways: Development and validation of an individual-differences measure of hope. Journal of Personality and Social Psychology, 60(4), 570–585.CrossRefPubMedGoogle Scholar
  43. 43.
    Babyak, M. A., Snyder, C. R., & Yoshinobu, L. (1993). Psychometric properties of the Hope Scale: A confirmatory factor analysis. Journal of Research in Personality, 27, 154–169.CrossRefGoogle Scholar
  44. 44.
    Strecher, V. J., DeVellis, B. M., Becker, M. H., & Rosenstock, I. M. (1986). The role of self-efficacy in achieving health behavior change. Health Education Quarterly, 13(1), 73–92.PubMedGoogle Scholar
  45. 45.
    Sitharthan, T., & Kavanagh, D. J. (1990). Role of self-efficacy in predicting outcomes from a programme for controlled drinking. Drug and Alcohol Dependence, 27(1), 87–94.CrossRefGoogle Scholar
  46. 46.
    Johnson, J. A. (1996). Self-efficacy theory as a framework for community pharmacy-based diabetes education programs. The Diabetes Educator, 22(3), 237–241.CrossRefPubMedGoogle Scholar
  47. 47.
    Fontaine, K. R., & Cheskin, L. J. (1997). Self-efficacy, attendance, and weight loss in obesity treatment. Addictive Behaviors, 22(4), 567–570.CrossRefPubMedGoogle Scholar
  48. 48.
    Colon, R. M., Wiatrek, D. E., & Evans, R. I. (2000). The relationship between psychosocial factors and condom use among African–American adolescents. Adolescence, 35(139), 559–569.PubMedGoogle Scholar
  49. 49.
    Fortenberry, J. D., Brizendine, E. J., Katz, B. P., & Orr, D. P. (2002). The role of self-efficacy and relationship quality in partner notification by adolescents with sexually transmitted infections. Archives of Pediatrics and Adolescent Medicine, 156(11), 1133–1137.PubMedGoogle Scholar
  50. 50.
    Zebracki, K., & Drotar, D. (2004). Outcome expectancy and self-efficacy in adolescent asthma self-management. Child Health Care, 33(2), 133–149.CrossRefGoogle Scholar
  51. 51.
    Lorig, K., Chastain, R. L., Ung, E., Shoor, S., & Holman, H. R. (1989). Development and evaluation of a scale to measure perceived self-efficacy in people with arthritis. Arthritis Rheumatology, 32(1), 37–44.CrossRefGoogle Scholar
  52. 52.
    Thompson, S. C. (2005). The role of personal control in adaptive functioning. In C. R. Snyder & S. J. Lopez (Eds.), Handbook of positive psychology (pp. 202–213). New York: Oxford University Press.Google Scholar
  53. 53.
    O’Hea, E. L., Grothe, K. B., Bodenlos, J. S., Boudreaux, E. D., White, M. A., & Brantley, P. J. (2005). Predicting medical regimen adherence: The interactions of health locus of control beliefs. Journal of Health Psychology, 10(5), 705–717.CrossRefPubMedGoogle Scholar
  54. 54.
    LaMontagne, L. L., Hepworth, J. T., Cohen, F., & Salisbury, M. H. (2004). Adolescents’ coping with surgery for scoliosis: Effects on recovery outcomes over time. Research in Nursing and Health, 27(4), 237–253.CrossRefPubMedGoogle Scholar
  55. 55.
    Wallston, K. A., Wallston, B. S., & DeVellis, R. (1978). Development of the multidimensional health locus of control (MHLC) scales. Health Education Monographs, 6(2), 160–170.PubMedGoogle Scholar
  56. 56.
    Spitzer, R. L., Williams, J. B. W., Kroenke, K., Linzer, M., deGruy, F. V., III., Hahn, S. R., et al. (1994). Utility of a new procedure for diagnosing mental disorders in primary care. The PRIME-MD 1000 study. JAMA, 272(22), 1749–1756.CrossRefPubMedGoogle Scholar
  57. 57.
    O’Connell, R. L., & Lim, L. L. (2000). Utility of the Charlson comorbidity index computed from routinely collected hospital discharge diagnosis codes. Methods of Information Medicine, 39(1), 7–11.Google Scholar
  58. 58.
    Deyo, R. A., Cherkin, D. C., & Ciol, M. A. (1992). Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. Journal of Clinical Epidemiology, 45(6), 613–619.CrossRefPubMedGoogle Scholar
  59. 59.
    Campbell, D. T., & Stanley, J. C. (1963). Experimental and Quasi-experimental designs for research. Boston: Houghton Mifflin Co.Google Scholar
  60. 60.
    Shrout, P. E., & Fleiss, J. L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86(2), 420–428.CrossRefPubMedGoogle Scholar
  61. 61.
    Kerlinger, F. N. (1986). Foundations of behavioral research. New York: Holt, Rinehart and Winston, Inc.Google Scholar
  62. 62.
    Gliner, J. A., & Morgan, G. A. (2000). Research methods in applied settings: An integrated approach to design and analysis. Mahwah, NJ: Lawrence Erlbaum.Google Scholar
  63. 63.
    Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait–multimethod matrix. Psychological Bulletin, 56(2), 81–105.CrossRefPubMedGoogle Scholar
  64. 64.
    Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 37–46.CrossRefGoogle Scholar
  65. 65.
    Floyd, F. J., & Widaman, K. F. (1995). Factor analysis in the development and refinement of clinical assessment instruments. Psychological Assessment, 7(3), 286–299.CrossRefGoogle Scholar
  66. 66.
    Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness-of-fit in the analysis of covariance structures. Psychological Bulletin, 88(3), 588–606.CrossRefGoogle Scholar
  67. 67.
    Prochaska, J. O., DiClemente, C. C., & Norcross, J. C. (1992). In search of how people change. Applications to addictive behaviors. American Psychologist, 47(9), 1102–1114.CrossRefPubMedGoogle Scholar
  68. 68.
    Committee on Quality Health Care in America, Institute of Medicine. (2001). Crossing the quality chasm. A new health system for the 21st century. Washington, D.C.: National Academy Press.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Richard L. Skolasky
    • 1
    • 4
  • Ellen J. Mackenzie
    • 2
  • Lee H. RileyIII
    • 1
  • Stephen T. Wegener
    • 3
  1. 1.Department of Orthopaedic SurgeryThe Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of Health Policy and ManagementThe Johns Hopkins University Bloomberg School of Public HealthBaltimoreUSA
  3. 3.Department of Physical Medicine and RehabilitationThe Johns Hopkins University School of MedicineBaltimoreUSA
  4. 4.c/o Elaine Henze, Medical Editor, Department of Orthopaedic SurgeryJohns Hopkins Bayview Medical CenterBaltimoreUSA

Personalised recommendations