Quality of Life Research

, Volume 18, Issue 7, pp 881–888 | Cite as

Building PROMIS item banks: librarians as co-investigators

  • Mary Klem
  • Ester Saghafi
  • Rebecca Abromitis
  • Angela Stover
  • Mary Amanda Dew
  • Paul Pilkonis
Article

Abstract

Purpose

There is growing interest in the use of item response theory (IRT) for creation of measures of health-related quality of life (HRQOL). A first step in IRT modeling is development of item banks. Our aim is to describe the value of including librarians and to describe processes used by librarians, in the creation of such banks.

Method

Working collaboratively with PROMIS researchers at the University of Pittsburgh, a team of librarians designed and implemented comprehensive literature searches in a selected set of information resources, for the purpose of identifying existing measures of patient-reported emotional distress.

Results

A step-by-step search protocol developed by librarians produced a set of 525 keywords and controlled vocabulary terms for use in search statements in 3 bibliographic databases. These searches produced 6,169 literature citations, allowing investigators to add 444 measurement scales to their item banks.

Conclusion

Inclusion of librarians on the Pittsburgh PROMIS research team allowed investigators to create large initial item banks, increasing the likelihood that the banks would attain high measurement precision during subsequent psychometric analyses. In addition, a comprehensive literature search protocol was developed that can now serve as a guide for other investigators in the creation of IRT item banks.

Keywords

Databases as topic Outcome assessment (health care) Librarians Interdisciplinary communication 

References

  1. 1.
    Reeve, B. B., Hays, R. D., Chang, C. H., & Perfetto, E. M. (2007). Applying item response theory to enhance health outcomes assessment. Quality of Life Research, 16(Suppl 1), 1–3. doi:10.1007/s11136-007-9220-6.CrossRefGoogle Scholar
  2. 2.
    Chang, C. H. (2007). Patient-reported outcomes measurement and management with innovative methodologies and technologies. Quality of Life Research, 16(Suppl 1), 157–166. doi:10.1007/s11136-007-9196-2.PubMedCrossRefGoogle Scholar
  3. 3.
    Hays, R. D., & Lipscomb, J. (2007). Next steps for use of item response theory in the assessment of health outcomes. Quality of Life Research, 16(Suppl 1), 195–199. doi:10.1007/s11136-007-9175-7.PubMedCrossRefGoogle Scholar
  4. 4.
    Cella, D., Yount, S., Rothrock, N., Gershon, R., Cook, K., Reeve, B., et al. (2007). The patient-reported outcomes measurement information system (PROMIS): Progress of an NIH roadmap cooperative group during its first two years. Medical Care, 45((5, Suppl 1)), S3–S11. doi:10.1097/01.mlr.0000258615.42478.55.PubMedCrossRefGoogle Scholar
  5. 5.
    Bjorner, J. B., Chang, C. H., Thissen, D., & Reeve, B. B. (2007). Developing tailored instruments: Item banking and computeraized adaptive assessment. Quality of Life Research, 16(Suppl 1), 95–108. doi:10.1007/s11136-007-9168-6.PubMedCrossRefGoogle Scholar
  6. 6.
    Revicki, D. A., & Cella, D. F. (1997). Health status assessment for the twenty-first century: Item response theory, item banking and computer adaptive testing. Quality of Life Research, 6(6), 595–600. doi:10.1023/A:1018420418455.PubMedCrossRefGoogle Scholar
  7. 7.
    Cook, K. F., Teal, C. R., Bjorner, J. B., Cella, D., Chang, C. H., Crane, P. K., et al. (2007). IRT health outcomes data analysis project: An overview and summary. Quality of Life Research, 16(Suppl 1), 121–132. doi:10.1007/s11136-007-9177-5.PubMedCrossRefGoogle Scholar
  8. 8.
    Fries, J. F., Bruce, B., & Cella, D. (2005). The promise of PROMIS: Using item response theory to improve assessment of patient-reported outcomes. Clinical and Experimental Rheumatology, 23(5, Suppl 39), S53–S57.PubMedGoogle Scholar
  9. 9.
    Medical Library Association. (2005). Role of expert searching in health sciences libraries. Journal of the Medical Library Association: JMLA, 93(1), 42–44.Google Scholar
  10. 10.
    Davidoff, F., & Florance, V. (2000). The informationist: A new health profession? Annals of Internal Medicine, 132(12), 996–998.PubMedGoogle Scholar
  11. 11.
    Lefebvre, C., Manheimer, E., & Glanville, J. (2008). Chapter 6: Searching for studies. In J. P. T. Higgins & S. Green (Eds.), Cochrane handbook for systematic reviews of interventions (pp. 95–150). England: Wiley.Google Scholar
  12. 12.
    Delaney, A., Bagshaw, S. M., Ferland, A., Laupland, K., Manns, B., & Doig, C. (2007). The quality of reports of critical care meta-analyses in the Cochrane database of systematic reviews: An independent appraisal. Critical Care Medicine, 35(2), 589–594. doi:10.1097/01.CCM.0000253394.15628.FD.PubMedCrossRefGoogle Scholar
  13. 13.
    Glenny, A., Esposito, M., Coulthard, P., & Worthington, H. (2003). The assessment of systematic reviews in dentistry. European Journal of Oral Sciences, 111(2), 85–92. doi:10.1034/j.1600-0722.2003.00013.x.PubMedCrossRefGoogle Scholar
  14. 14.
    Kelly, K., Travers, A., Dorgan, M., Slater, L., & Rowe, B. (2001). Evaluating the quality of systematic reviews in the emergency medicine literature. Annals of Emergency Medicine, 38(5), 518–526. doi:10.1067/mem.2001.115881.PubMedCrossRefGoogle Scholar
  15. 15.
    Moher, D., Soeken, K., Sampson, M., Ben-Porat, L., & Berman, B. (2002). Assessing the quality of reports of systematic reviews in pediatric complementary and alternative medicine. BMC Pediatrics, 2, 3. doi:10.1186/1471-2431-2-3.PubMedCrossRefGoogle Scholar
  16. 16.
    Mokkink, L. B., Terwee, C. B., Stratford, P. W., Alonso, J., Patrick, D. L., Riphagen, I., et al. (2009). Evaluation of the methodological quality of systematic reviews of health status measurement instruments. Quality of Life Research, 18(3), 313–333. doi:10.1007/s11136-009-9451-9.PubMedCrossRefGoogle Scholar
  17. 17.
    Golder, S., Loke, Y., & McIntosh, H. M. (2008). Poor reporting and inadequate searches were apparent in systematic reviews of adverse effects. Journal of Clinical Epidemiology, 61(5), 440–448. doi:10.1016/j.jclinepi.2007.06.005.PubMedCrossRefGoogle Scholar
  18. 18.
    Sampson, M., Barrowman, N. J., Moher, D., Klassen, T. P., Pham, B., Platt, R., et al. (2003). Should meta-analysts search Embase in addition to Medline? Journal of Clinical Epidemiology, 56(10), 943–955. doi:10.1016/S0895-4356(03)00110-0.PubMedCrossRefGoogle Scholar
  19. 19.
    Bellack, A. S., & Hersen, M. (1998). Behavioral assessment: A practical handbook (4th ed.). Boston: Allyn and Bacon.Google Scholar
  20. 20.
    Knapp, S. D. (2000). The contemporary thesaurus of search terms and synonyms: A guide for natural language computer searching (2nd ed.). Phoenix, Ariz.: Oryx Press.Google Scholar
  21. 21.
    Radloff, L. S. (1977). The CES-D Scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1(3), 385–401. doi:10.1177/014662167700100306.CrossRefGoogle Scholar
  22. 22.
    Pilkonis, P. A. (2006). Item identification and pooling. Inaugural PROMIS Conference; Gaithersburg, MD.Google Scholar
  23. 23.
    Ward, D., Meadows, S. E., & Nashelsky, J. E. (2005). The role of expert searching in the family physicians’ inquiries network (FPIN). Journal of the Medical Library Association: JMLA, 93(1), 88–96.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Mary Klem
    • 1
  • Ester Saghafi
    • 1
  • Rebecca Abromitis
    • 1
  • Angela Stover
    • 1
  • Mary Amanda Dew
    • 1
  • Paul Pilkonis
    • 1
  1. 1.PittsburghUSA

Personalised recommendations