Quality of Life Research

, Volume 18, Issue 3, pp 359–370 | Cite as

Measuring global physical health in children with cerebral palsy: illustration of a multidimensional bi-factor model and computerized adaptive testing

  • Stephen M. Haley
  • Pengsheng Ni
  • Helene M. Dumas
  • Maria A. Fragala-Pinkham
  • Ronald K. Hambleton
  • Kathleen Montpetit
  • Nathalie Bilodeau
  • George E. Gorton
  • Kyle Watson
  • Carole A. Tucker
Article

Abstract

Purpose

The purposes of this study were to apply a bi-factor model for the determination of test dimensionality and a multidimensional CAT using computer simulations of real data for the assessment of a new global physical health measure for children with cerebral palsy (CP).

Methods

Parent respondents of 306 children with cerebral palsy were recruited from four pediatric rehabilitation hospitals and outpatient clinics. We compared confirmatory factor analysis results across four models: (1) one-factor unidimensional; (2) two-factor multidimensional (MIRT); (3) bi-factor MIRT with fixed slopes; and (4) bi-factor MIRT with varied slopes. We tested whether the general and content (fatigue and pain) person score estimates could discriminate across severity and types of CP, and whether score estimates from a simulated CAT were similar to estimates based on the total item bank, and whether they correlated as expected with external measures.

Results

Confirmatory factor analysis suggested separate pain and fatigue sub-factors; all 37 items were retained in the analyses. From the bi-factor MIRT model with fixed slopes, the full item bank scores discriminated across levels of severity and types of CP, and compared favorably to external instruments. CAT scores based on 10- and 15-item versions accurately captured the global physical health scores.

Conclusions

The bi-factor MIRT CAT application, especially the 10- and 15-item versions, yielded accurate global physical health scores that discriminated across known severity groups and types of CP, and correlated as expected with concurrent measures. The CATs have potential for collecting complex data on the physical health of children with CP in an efficient manner.

Keywords

Bi-factor model Computerized adaptive testing Item response theory 

Notes

Acknowledgments

Supported by the Shriners Hospital for Children Foundation (Grant # 8957) and an Independent Scientist award to Dr. Haley (National Center on Medical Rehabilitation Research/NICHD/NIH, grant # K02 HD45354-01A1).

References

  1. 1.
    Engel, J., Petrina, T., Dudgeon, B., & McKearnan, K. (2006). Cerebral palsy and chronic pain: A descriptive study of children and adolescents. Physical and Occupational Therapy in Pediatrics, 25, 73–84. doi: 10.1300/J006v25n04_06.CrossRefGoogle Scholar
  2. 2.
    Berrin, S., Malcarne, V., Varni, J., Burwinkle, T., Sherman, S., Artavia, K., et al. (2007). Pain, fatigue, and school functioning in children with cerebral palsy: A path-analytic model. Journal of Pediatric Psychology, 32, 330–337. doi: 10.1093/jpepsy/jsl017.PubMedCrossRefGoogle Scholar
  3. 3.
    Tervo, R., Symons, F., Stout, J., & Novacheck, T. (2006). Parental report of pain and associated limitations in ambulatory children with cerebral palsy. Archives of Physical Medicine and Rehabilitation, 87, 928–934. doi: 10.1016/j.apmr.2006.02.023.PubMedCrossRefGoogle Scholar
  4. 4.
    Houlihan, C., O’Donnell, M., Conaway, M., & Stevenson, R. (2004). Bodily pain and health-related quality of life in children with cerebral palsy. Developmental Medicine and Child Neurology, 46, 305–310. doi: 10.1017/S0012162204000507.PubMedCrossRefGoogle Scholar
  5. 5.
    Castle, K., Imms, C., & Jun, H. (2007). Being in pain: A phenomenological study of young people with cerebral palsy. Developmental Medicine and Child Neurology, 49, 445–449.PubMedGoogle Scholar
  6. 6.
    Varni, J., Burwinkle, T., Berrin, S., Sherman, S., Artavia, K., Malcarne, V., et al. (2006). The PedsQL in pediatric cerebral palsy: Reliability, validity, and sensitivity of the Generic Core Scales and Cerebral Palsy Module. Developmental Medicine and Child Neurology, 48, 442–449. doi: 10.1017/S001216220600096X.PubMedCrossRefGoogle Scholar
  7. 7.
    Rimmer, J. (2001). Physical fitness levels of persons with cerebral palsy. Developmental Medicine and Child Neurology, 43, 208–212. doi: 10.1017/S0012162201000391.PubMedCrossRefGoogle Scholar
  8. 8.
    Vargus-Adams, J. (2006). Longitudinal use of the Child Health Questionnaire in childhood cerebral palsy. Developmental Medicine and Child Neurology, 48, 343–347. doi: 10.1017/S0012162206000752.PubMedCrossRefGoogle Scholar
  9. 9.
    Narayanan, U., Fehlings, D., Weir, S., Knights, S., & Kiran, S. (2006). Initial development and validation of the Caregiver Priorities and Child Health Index of Life with Disabilities (CPCHILD). Developmental Medicine and Child Neurology, 48, 804–812. doi: 10.1017/S0012162206001745.PubMedCrossRefGoogle Scholar
  10. 10.
    White-Koning, M., Arnaud, C., Bourdet-Lubere, S., Bazex, H., Colver, A. F., & Grandjean, H. (2005). Subjective quality of life in children with intellectual impairment—how can it be assessed? Developmental Medicine and Child Neurology, 47, 281–285. doi: 10.1017/S0012162205000526.PubMedCrossRefGoogle Scholar
  11. 11.
    Novacheck, T., Stout, J., & Tervo, R. (2000). Reliability and validity of the Gillette Functional Assessment Questionnaire as an outcome measure in children with walking disabilities. Journal of Pediatric Orthopedics, 20, 75–81. doi: 10.1097/00004694-200001000-00017.PubMedCrossRefGoogle Scholar
  12. 12.
    Landgraf, J., Abetz, L., & Ware, J. E., Jr. (1996). The CHQ: A user’s manual (1st ed.). Boston, MA: The Health Institute, New England Medical Center.Google Scholar
  13. 13.
    Bottos, M., & Gericke, C. (2003). Ambulatory capacity in cerebral palsy: Prognostic criteria and consequences for intervention. Developmental Medicine and Child Neurology, 45, 786–790.PubMedCrossRefGoogle Scholar
  14. 14.
    Ware, J. E., Jr. (2003). Conceptualization and measurement of health-related quality of life: Comments on an evolving field. Archives of Physical Medicine and Rehabilitation, 84, S43–S51. doi: 10.1053/apmr.2003.50246.PubMedCrossRefGoogle Scholar
  15. 15.
    Jacobusse, G., & van Buuren, S. (2007). Computerized adaptive testing for measuring development of young children. Statistics in Medicine, 26, 2629–2638. doi: 10.1002/sim.2753.PubMedCrossRefGoogle Scholar
  16. 16.
    Revicki, D., & Cella, D. (1997). Health status assessment for the twenty-first century: Item response theory, item banking and computer adaptive testing. Quality of Life Research, 6, 595–600. doi: 10.1023/A:1018420418455.PubMedCrossRefGoogle Scholar
  17. 17.
    Cella, D., Gershon, R., Lai, J.-S., & Choi, S. (2007). The future of outcomes measurement: Item banking, tailored short forms, and computerized adaptive assessment. Quality of Life Research, 16, 133–141. doi: 10.1007/s11136-007-9204-6.PubMedCrossRefGoogle Scholar
  18. 18.
    Hays, R., & Lipscomb, J. (2007). Next steps for use of item response theory in the assessment of health outcomes. Quality of Life Research, 16(Suppl 1), 195–199. doi: 10.1007/s11136-007-9175-7.
  19. 19.
    Ware, J. E., Jr., Gandek, B., Sinclair, S., & Bjorner, B. (2005). Item response theory in computer adaptive testing: Implications for outcomes measurement in rehabilitation. Rehabilitation Psychology, 50, 71–78. doi: 10.1037/0090-5550.50.1.71.CrossRefGoogle Scholar
  20. 20.
    Wainer, H. (2000). Computerized adaptive testing: A primer. Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  21. 21.
    Hambleton, R. K. (1989) Principles and selected applications of Item Response Theory. In Educational measurement (3rd ed., pp. 147–200). New York: American Council on Education-Macmillan Publishing Company.Google Scholar
  22. 22.
    Ackerman, T. (1989). Unidimensional IRT calibration of compensatory and noncompensatory multidimensional items. Applied Psychological Measurement, 13, 113–127. doi: 10.1177/014662168901300201.CrossRefGoogle Scholar
  23. 23.
    Haley, S., Ni, P., Ludlow, L., & Fragala-Pinkham, M. (2006). Measurement precision and efficiency of multidimensional computer adaptive testing of physical functioning using the Pediatric Evaluation of Disability Inventory. Archives of Physical Medicine and Rehabilitation, 87, 1223–1229. doi: 10.1016/j.apmr.2006.05.018.PubMedCrossRefGoogle Scholar
  24. 24.
    Reise, S., Morizot, J., & Hays, R. (2007). The role of the bifactor model in resolving dimensionality issues in health outcomes measures. Quality of Life Research, 16(Suppl 1), 19–31. doi: 10.1007/s11136-007-9183-7.PubMedCrossRefGoogle Scholar
  25. 25.
    Reeve, B., Hays, R., Bjorner, J., Cook, K., Crane, P., Teresi, J., et al. (2007). Psychometric evaluation and calibration of health-related quality of life item banks: Plans for the Patient-Reported Outcomes Measurement Information System (PROMIS). Medical Care, 45(5, Suppl 1), S22–S31. doi: 10.1097/01.mlr.0000250483.85507.04.PubMedCrossRefGoogle Scholar
  26. 26.
    Gorter, J., Rosenbaum, P., Hanna, S., Palisano, R., Bartlett, D., Russell, D., et al. (2004). Limb distribution, motor impairment, and functional classification of cerebral palsy. Developmental Medicine and Child Neurology, 46, 461–467. doi: 10.1017/S0012162204000763.PubMedCrossRefGoogle Scholar
  27. 27.
    Tucker, C., Haley, S., Watson, K., Dumas, H., Fragala-Pinkham, M., Gorton, G., et al. (2008). Physical function for children and youth with cerebral palsy: Item bank development for computer adaptive testing. Journal of Pediatric Rehabilitation Medicine, 1, 237–244.Google Scholar
  28. 28.
    Dumas, H., Watson, K., Fragala-Pinkham, M., Haley, S., Bilodeau, N., Montpetit, K., et al. (2008). Cognitive interviewing to elicit parent feedback of test items for assessing physical function in children with cerebral palsy. Pediatric Physical Therapy, 20, 356–362. doi: 10.1097/PEP.0b013e31818ac500.PubMedCrossRefGoogle Scholar
  29. 29.
    Palisano, R., Rosenbaum, P., Walter, S., Russell, D., Wood, E., & Galuppi, B. (1997). Development and reliability of a system to classify gross motor function in children with cerebral palsy. Developmental Medicine and Child Neurology, 39, 214–223.PubMedGoogle Scholar
  30. 30.
    Daltroy, L., Liang, M., Fossel, A., & Goldberg, M. (1998). The POSNA Pediatric Musculoskeletal Functional Health Questionnaire: Report on reliability, validity, and sensitivity to change. Journal of Pediatric Orthopedics, 18, 561–571. doi: 10.1097/00004694-199809000-00001.PubMedCrossRefGoogle Scholar
  31. 31.
    Kass, R., & Wasserman, L. (1995). A reference Bayesian test for nested hypotheses and its relationship to the Schwartz criterion. Journal of the American Statistical Association, 90, 928–934. doi: 10.2307/2291327.CrossRefGoogle Scholar
  32. 32.
    Chen, F., West, S., & Sousa, K. (2006). A comparison of bifactor and second-order models of quality of life. Multivariate Behavioral Research, 41, 189–225. doi: 10.1207/s15327906mbr4102_5.CrossRefGoogle Scholar
  33. 33.
    Adams, R., Wilson, M., & Wang, W. (1997). The multidimensional random coefficients multinomial logit model. Applied Psychological Measurement, 21, 1–23. doi: 10.1177/0146621697211001.CrossRefGoogle Scholar
  34. 34.
    Muthen, B., & Muthen, L. (2001). Mplus user’s guide. Los Angeles: Muthen and Muthen.Google Scholar
  35. 35.
    Drasgow, F., Levine, M., & Williams, E. (1985). Appropriateness measurement with polytomous item response models and standardized indices. The British Journal of Mathematical and Statistical Psychology, 38, 67–86.Google Scholar
  36. 36.
    Ackerman, T., Hombo, C., & Neustel, S. (2002). Evaluating indices used to assess the goodness-of-fit of the compensatory multidimensional item response theory model. Poster presented at the Annual Meeting of the National Council on Measurement in Education, New Orleans, LA.Google Scholar
  37. 37.
    DeMars, C. (2005). Scoring subscales using multidimensional item response theory models. Poster presented at the annual meeting of the American Psychological Association, Washington, DC.Google Scholar
  38. 38.
    Ackerman, T. (1994). Using multidimensional item response theory to understand what items and tests are measuring. Applied Measurement in Education, 7, 255–278. doi: 10.1207/s15324818ame0704_1.CrossRefGoogle Scholar
  39. 39.
    Segall, D. (1996). Multidimensional adaptive testing. Psychometrika, 61, 331–354. doi: 10.1007/BF02294343.CrossRefGoogle Scholar
  40. 40.
    Jackson, D. (2003). Revisiting sample size and number of parameter estimates: Some support for the N:q hypothesis. Structural Equation Modeling, 1, 128–141. doi: 10.1207/S15328007SEM1001_6.CrossRefGoogle Scholar
  41. 41.
    Schenker, R., Coster, W., & Parush, S. (2005). Participation and activity performance of students with cerebral palsy within the school environment. Disability and Rehabilitation, 27, 539–552. doi: 10.1080/09638280400018437.PubMedCrossRefGoogle Scholar
  42. 42.
    Harvey, A., Robin, J., Morris, M., Graham, H., & Baker, R. (2008). A systematic review of measures of activity limitation for children with cerebral palsy. Developmental Medicine and Child Neurology, 50, 190–198.PubMedCrossRefGoogle Scholar
  43. 43.
    Coster, W., Haley, S., Ni, P., Dumas, H., & Fragala-Pinkham, M. (2008). Assessing self-care and social function using a computer adaptive testing version of the pediatric evaluation of disability inventory. Archives of Physical Medicine and Rehabilitation, 89, 622–629. doi: 10.1016/j.apmr.2007.09.053.PubMedCrossRefGoogle Scholar
  44. 44.
    Haley, S., Raczek, A., Coster, W., Dumas, H., & Fragala-Pinkham, M. (2005). Assessing mobility in children using a computer adaptive testing version of the Pediatric Evaluation of Disability Inventory (PEDI). Archives of Physical Medicine and Rehabilitation, 86, 932–939. doi: 10.1016/j.apmr.2004.10.032.PubMedCrossRefGoogle Scholar
  45. 45.
    Haley, S., Ni, P., Fragala-Pinkham, M., Skrinar, A., & Corzo, D. (2005). A computer adaptive testing approach for assessing physical function in children and adolescents. Developmental Medicine and Child Neurology, 47, 113–120. doi: 10.1017/S0012162205000204.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Stephen M. Haley
    • 1
  • Pengsheng Ni
    • 1
  • Helene M. Dumas
    • 2
  • Maria A. Fragala-Pinkham
    • 2
  • Ronald K. Hambleton
    • 3
  • Kathleen Montpetit
    • 4
  • Nathalie Bilodeau
    • 4
  • George E. Gorton
    • 5
  • Kyle Watson
    • 6
  • Carole A. Tucker
    • 7
  1. 1.Health and Disability Research InstituteBoston University School of Public HealthBostonUSA
  2. 2.Research Center for Children with Special Health Care NeedsFranciscan Hospital for ChildrenBostonUSA
  3. 3.Department of Educational Policy, Research and Administration, Center for Educational AssessmentUniversity of MassachusettsAmherstUSA
  4. 4.Department of Occupational TherapyShriners Hospital for ChildrenMontrealCanada
  5. 5.Motion LabShriners Hospital for ChildrenSpringfieldUSA
  6. 6.Motion Analysis LabShriners Hospital for ChildrenPhiladelphiaUSA
  7. 7.Physical Therapy Department, College of Health ProfessionsTemple UniversityPhiladelphiaUSA

Personalised recommendations