Quality of Life Research

, 18:253 | Cite as

The first stage of developing preference-based measures: constructing a health-state classification using Rasch analysis

  • Tracey Young
  • Yaling Yang
  • John E. Brazier
  • Aki Tsuchiya
  • Karin Coyne
Article

Abstract

Objective

To set out the methodological process for using Rasch analysis alongside classical psychometric methods in the development of a health-state classification that is amenable to valuation.

Methods

The overactive bladder questionnaire is used to illustrate a five step process for deriving a reduced health-state classification from an existing non-preference-based health-related quality-of-life instrument. Step I uses factor analysis to establish instrument dimensions, step II excludes items that do not meet the initial validation process and step III uses criteria based on Rasch analysis and other psychometric testing to select the final items for the health-state classification. In step IV, item levels are examined and Rasch analysis is used to explore the possibility of reducing the number of item levels. Step V repeats steps I–IV on alternative data sets in order to validate the selection of items for the health-state classification.

Results

The techniques described enable the construction of a five-dimension health-state classification, the OAB-5D, amenable to valuation tasks that will allow the derivation of preference weights.

Conclusions

The health-related quality of life of patients with conditions like overactive bladder can be valued and quality adjustment weights estimated for calculation of quality-adjusted life years.

Keywords

Rasch analysis Health-related quality of life Condition-specific measure Preference-based measures Overactive bladder syndrome Quality-adjusted life years 

Abbreviations

DIF

Differential item functioning

HRQL

Health-related quality of life

Non-PBM

Non-preference-based measure

MAUT

Multiatribute utility theory

OAB

Overactive bladder syndrome

OAB-q

Overactive bladder questionnaire

PBM

Preference-based measure

PSI

Person separation index

QALY

Quality-adjusted life years

SG

Standard gamble

SRM

Standardised response mean

TTO

Time-trade off

References

  1. 1.
    Brazier, J., Ratcliffe, J., Salomon, J. A., & Tsuchiya, A. (2007). Measuring and valuing health benefits for economic evaluation. New York: Oxford University Press.Google Scholar
  2. 2.
    Brooks, R. (1996). EQ-5D, the current state of play. Health Policy, 37, 53–72. doi:10.1016/0168-8510(96)00822-6.PubMedCrossRefGoogle Scholar
  3. 3.
    Feeny, D., Furlong, W., Torrance, G. W., et al. (2002). Multiattribute and single-attribute utility functions for the health utilities index mark 3 system. Medical Care, 40, 113–128. doi:10.1097/00005650-200202000-00006.PubMedCrossRefGoogle Scholar
  4. 4.
    Brazier, J., Roberts, J., & Deverill, M. (2002). The estimation of a preference-based measure of health from the SF-36. Journal of Health Economics, 21(2), 271–292. doi:10.1016/S0167-6296(01)00130-8.PubMedCrossRefGoogle Scholar
  5. 5.
    Marra, C. A., Woolcott, J. C., Kopec, J. A., et al. (2005). A comparison of generic, indirect utility measures (the HUI2, HUI3, SF-6D, and the EQ-5D) and disease-specific instruments (the RAQoL and the HAQ) in rheumatoid arthritis. Social Science and Medicine, 60(7), 1571–1582. doi:10.1016/j.socscimed.2004.08.034.PubMedCrossRefGoogle Scholar
  6. 6.
    Brazier, J. E., Deverill, M., Harper, R., Booth, A., et al. (1999). A review of the use of Health Status measures in economic evaluation. Health Technology Assessment, 3(9), 1–147.Google Scholar
  7. 7.
    Coast, J. (1992). Reprocessing data to form QALYs. BMJ (Clinical Research Ed), 305(6845), 87–90.Google Scholar
  8. 8.
    Fryback, D. G., Dasbach, E. J., Klein, R., et al. (1993). The Bever Dam health outcomes study: Initial catalogue of health-state quality factors. Medical Decision Making, 13, 89–102. doi:10.1177/0272989X9301300202.PubMedCrossRefGoogle Scholar
  9. 9.
    Nichol, M. B., Sengupta, N., & Globe, D. R. (2001). Evaluating quality adjusted life-years: Estimation of the Health Utility Index (HUI2) from the SF-36. Medical Decision Making, 21, 105–112. doi:10.1177/02729890122062352.PubMedCrossRefGoogle Scholar
  10. 10.
    Tsuchyia, A., Brazier, J., McColl, E., Parkin, D., et al. (2002). Deriving preference-based condition-specific instruments: converting AQLQ into EQ-5D indices. Health Economics and Decision Science Discussion Paper Series No. 02/01, Accessed from http://www.shef.ac.uk/content/1/c6/01/87/47/DP0201.pdf.
  11. 11.
    Brazier, J., Yang, Y., Tsuchiya, A., et al. (2007). Review of methods for mapping between measures of health related quality of life onto generic preference-based measures: a road to nowhere? Paper Presented at the Health Economics Study Group Meeting, Brunel University, Uxbridge.Google Scholar
  12. 12.
    Gray, A., Rivero-Arias, O., & Clarke, P. M. (2006). Estimating the association between SF-12 responses and EQ-5D utility values by response mapping. Medical Decision Making, 26, 18–29. doi:10.1177/0272989X05284108.PubMedCrossRefGoogle Scholar
  13. 13.
    Brazier, J., Usherwood, T., Harper, R., & Thomas, K. (1998). Deriving a preference-based single index from the UK SF-36 health survey. Journal of Clinical Epidemiology, 51(11), 1115–1128. doi:10.1016/S0895-4356(98)00103-6.PubMedCrossRefGoogle Scholar
  14. 14.
    Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Chicago: University of Chicago Press. Reprinted 1980.Google Scholar
  15. 15.
    Brazier, J., & Roberts, J. (2005). Estimation of a preference based index measure of health for the SF-12 and comparison to the SF-36. Medical Care, 42(9), 851–859. doi:10.1097/01.mlr.0000135827.18610.0d.CrossRefGoogle Scholar
  16. 16.
    Yang, Y., Brazier, J., Tsuchyia, A., Coyne, K., et al. (2009). Estimating a preference-based single index from the Overactive Bladder Questionnaire (OAB_q). Value in Health, 12(1).Google Scholar
  17. 17.
    Abrams, P., Cardozo, L., Fall, M., et al. (2002). The standardization of terminology of lower urinary tract function: Report from the Standardization Sub-committee of the International Continence Society. Neurourology and Urodynamics, 21, 167–178. doi:10.1002/nau.10052.PubMedCrossRefGoogle Scholar
  18. 18.
    Kobelt, G., Kirchberger, I., & Malone-Lee, J. (1999). Quality-of-life aspects of the overactive bladder and the effect of treatment with tolterodine. BJU International, 83(6), 583–590. doi:10.1046/j.1464-410x.1999.00004.x.PubMedCrossRefGoogle Scholar
  19. 19.
    Coyne, K. S., Matza, L. S., & Thompson, C. L. (2005). The responsiveness of the overactive bladder questionnaire (OAB-q). Quality of Life Research, 14(3), 849–855. doi:10.1007/s11136-004-0706-1.PubMedCrossRefGoogle Scholar
  20. 20.
    Coyne, K., Revicki, D., Hunt, T., et al. (2002). Psychometric validation of an overactive bladder symptom and health-related quality of life questionnaire: The OAB-q. Quality of Life Research, 11(6), 563–574. doi:10.1023/A:1016370925601.PubMedCrossRefGoogle Scholar
  21. 21.
    Matza, L. S., Thompson, C. L., Krasnow, J., Brewster-Jordan, J., Zyczynski, T., & Coyne, K. S. (2005). Test-retest reliability of four questionnaires for patients with overactive bladder: The overactive bladder questionnaire (OAB-q), patient perception of bladder condition (PPBC), urgency questionnaire (UQ), and the primary OAB symptom questionnaire (POSQ). Neurourology and Urodynamics, 24(3), 215–225. doi:10.1002/nau.20110.PubMedCrossRefGoogle Scholar
  22. 22.
    Siami, P., Seidman, L. S., & Lama, D. (2002). A multicentre, prospective, open-label study of tolterodine extended-release 4 mg for overactive bladder: The speed of onset of therapeutic assessment trial (STAT). Clinical Therapeutics, 24(4), 616–628. doi:10.1016/S0149-2918(02)85137-2.PubMedCrossRefGoogle Scholar
  23. 23.
    Duncan, P. W., Bode, R. K., Min Lai, S., & Perera, S. (2003). Glycine antagonist in neuroprotection Americans investigators. Rasch analysis of a new stroke-specific outcome scale: The Stroke Impact Scale. Archives of Physical Medicine and Rehabilitation, 84(7), 950–963. doi:10.1016/S0003-9993(03)00035-2.PubMedCrossRefGoogle Scholar
  24. 24.
    Gilworth, G., Chamberlain, M. A., Bhakta, B., Haskard, D., Silman, A., & Tennant, A. (2004). Development of the BD-HRQL: A quality of life measure specific to Behcet’s disease. The Journal of Rheumatology, 31(5), 931–937.PubMedGoogle Scholar
  25. 25.
    Pesudovs, K., Garamendi, E., & Elliott, D. B. (2004). The quality of life impact of refractive correction (QIRC) questionnaire: Development and validation. Optometry and Vision Science, 81(10), 769–777. doi:10.1097/00006324-200410000-00009.PubMedCrossRefGoogle Scholar
  26. 26.
    Raczek, A. E., Ware, J. E., Bjorner, J. B., Gandek, B., Haley, S. M., Aaronson, N. K., et al. (1998). Comparison of Rasch and summated rating scales constructed from SF-36 physical functioning items in seven countries: Results from the IHRQLA project. Journal of Clinical Epidemiology, 15(11), 1203–1214. doi:10.1016/S0895-4356(98)00112-7.CrossRefGoogle Scholar
  27. 27.
    White, L. J., & Velozo, C. A. (2002). The use of Rasch measurement to improve the Oswestry classification scheme. Archives of Physical Medicine and Rehabilitation, 83(6), 822–831. doi:10.1053/apmr.2002.32685.PubMedCrossRefGoogle Scholar
  28. 28.
    Valderas, J. M., Alonso, J., & Prieto, L. (2004). Content-based interpretation aids for health-related quality of life measures in clinical practice. An example for the visual function index (VF-14). Quality of Life Research, 13(1), 35–44. doi:10.1023/B:QURE.0000015298.09085.b0.PubMedCrossRefGoogle Scholar
  29. 29.
    Bond, T. G., & Fox, C. M. (2007). Applying the Rasch model: Fundamental measurement in the human sciences (2nd ed.). New Jersey: Lawrence Erlbaum Associates.Google Scholar
  30. 30.
    Feeny, D. (2002). The utility approach to assessing population health. In C. Murray, J. Salomon, C. Mathers, & A. Lopez (Eds.), Summary measures of population health: Concepts, ethics. measurement and applications (pp. 515–528). Geneva: World Health Organisation.Google Scholar
  31. 31.
    Chatfield, C., & Collins, A. J. (1980). Introduction to multivariate analysis. Cambridge: Chapman and Hall; University Press.Google Scholar
  32. 32.
    Linacre, J. M. (1999). Investigating rating scale category utility. Journal of Outcome Measurement, 3(2), 103–122.PubMedGoogle Scholar
  33. 33.
    Kubinger, K. D. (2005). Psychological test calibration using the Rasch model–some critical suggestions on traditional approaches. International Journal of Testing, 5(4), 377–394. doi:10.1207/s15327574ijt0504_3.CrossRefGoogle Scholar
  34. 34.
    Nunnally, J. O. (1978). Psychometric theory. New York: McGraw Hill.Google Scholar
  35. 35.
    Tennant, A., McKenna, S. P., & Hagell, P. (2004). Application of Rasch analysis in the development and application of quality of life instruments. Value in Health, 7(Supplement 1), S22–S26. doi:10.1111/j.1524-4733.2004.7s106.x.PubMedCrossRefGoogle Scholar
  36. 36.
    Guyatt, G. H., Osoba, D., Wu, A. W., Wyrwich, K. W., Norman, G. R., et al. (2002). Clinical significance consensus meeting group. Methods to explain the clinical significance of health status measures. Mayo Clinic Proceedings, 77(4), 371–383.PubMedCrossRefGoogle Scholar
  37. 37.
    Rasch Unidimensional Measurement Models (RUMM) 2020 ©. RUMM Laboratory Pty Ltd 1997-2004.Google Scholar
  38. 38.
    SPSS for Windows.Release. 14.0.1. 2005. Chicago: SPSS Inc. 2005.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Tracey Young
    • 1
    • 2
  • Yaling Yang
    • 1
  • John E. Brazier
    • 1
  • Aki Tsuchiya
    • 1
    • 3
  • Karin Coyne
    • 4
  1. 1.School of Health and Related ResearchHEDS University of SheffieldSheffieldUK
  2. 2.Yorkshire and Humber Research Design Service (RDS)University of SheffieldSheffieldUK
  3. 3.Department of EconomicsUniversity of SheffieldSheffieldUK
  4. 4.United BioSource Corporation Center for Health Outcomes ResearchBethesdaUSA

Personalised recommendations