Advertisement

Quality of Life Research

, Volume 18, Issue 1, pp 53–63 | Cite as

Comparison between exploratory factor-analytic and SEM-based approaches to constructing SF-36 summary scores

  • Fotios Anagnostopoulos
  • Dimitris Niakas
  • Yannis Tountas
Article

Abstract

Objective To compare the two higher order factor structures of the Short-Form 36 (SF-36) Health Survey, using exploratory factor analytic methods and structural equation modeling (SEM). Methods Two population data sets were used. A stratified representative sample (n = 1,005) of the Greek general population was approached for interview. This survey containing the SF-36 was used to obtain component score coefficients from principal components analysis and orthogonal rotation. These coefficients were then used in the second data set (n = 1,007) of the Greek adult general population to compute scores for the physical component summary and the mental component summary of the SF-36. The second data set was also used to obtain factor scores for physical and mental health measures, applying SEM. Results Exploratory factor analysis supported the existence of two principal components that are the basis for summary physical and mental health measures. SEM showed that models assuming that physical and mental health are correlated provided a better fit to the data than models assuming independence between physical and mental health. However, all eight dimensions of SF-36 should be included in the construction of summary scores. Conclusions These results confirm the multidimensional structure of the SF-36, the correlational equivalence between standard summary measures and SEM-based second-order factor scores, and underscore the feasibility of multinational comparisons of health status using this instrument.

Keywords

Quality of life SF-36 Health Survey RAND-36 PCS and MCS summary health measures Structural equation modeling 

Abbreviations

SEM

Structural equation modeling

PCS

Physical component summary

MCS

Mental component summary

RMSEA

Root mean squared error of approximation

Notes

Acknowledgements

The authors gratefully acknowledge the helpful comments and constructive suggestions received from Professor Ron Hays and the anonymous reviewers.

References

  1. 1.
    Geigle, R., & Jones, S. B. (1990). Outcomes measurement: A report from the front. Inquiry, 27, 7–13.PubMedGoogle Scholar
  2. 2.
    Lansky, D., Butler, J. B. V., & Waller, F. T. (1992). Using health status measures in the hospital setting: From acute care to “outcomes management”. Medical Care, 30(Suppl), MS57–MS73. doi: 10.1097/00005650-199205001-00006.PubMedCrossRefGoogle Scholar
  3. 3.
    Phillips, R. C., & Lansky, D. J. (1992). Outcomes management in heart valve replacement surgery: Early experience. The Journal of Heart Valve Disease, 1, 42–50.PubMedGoogle Scholar
  4. 4.
    Alonso, J., Ferrer, M., Gandek, B., Ware, J. E., Aaronson, N. K., Mosconi, P., et al. (2004). Health-related quality of life associated with chronic conditions in eight countries: Results from the International Quality of Life Assessment (IQOLA) project. Quality of Life Research, 13, 283–298. doi: 10.1023/B:QURE.0000018472.46236.05.PubMedCrossRefGoogle Scholar
  5. 5.
    Baker, F., Haffer, S. C., & Denniston, M. (2003). Health-related quality of life of cancer and noncancer patients in medicare managed care. Cancer, 97, 674–681. doi: 10.1002/cncr.11085.PubMedCrossRefGoogle Scholar
  6. 6.
    Camilleri-Brennan, J., & Steele, R. J. C. (2001). The impact of recurrent rectal cancer on quality of life. European Journal of Surgical Oncology, 27, 349–353. doi: 10.1053/ejso.2001.1115.PubMedCrossRefGoogle Scholar
  7. 7.
    Ware, J. E., Kosinski, M., & Gandek, B. (2003). SF-36 Health Survey: Manual and interpretation guide. Lincoln: QualityMetric Inc.Google Scholar
  8. 8.
    Ware, J. E., & Gandek, B. (1998). Overview of the SF-36 Health Survey and the International Quality of Life Assessment (IQOLA) project. Journal of Clinical Epidemiology, 51, 903–912. doi: 10.1016/S0895-4356(98)00081-X.PubMedCrossRefGoogle Scholar
  9. 9.
    Ware, J. E., Kosinski, M., Gandek, B., Aaronson, N. K., Apolone, G., Bech, P., et al. (1998). The factor structure of the SF-36 Health Survey in 10 countries: Results from the IQOLA project. Journal of Clinical Epidemiology, 51, 1159–1165. doi: 10.1016/S0895-4356(98)00107-3.PubMedCrossRefGoogle Scholar
  10. 10.
    Ware, J. E., Gandek, B., Kosinski, M., Aaronson, N. K., Apolone, G., Brazier, J., et al. (1998). The equivalence of SF-36 summary health scores estimated using standard and country-specific algorithms in 10 countries: Results from the IQOLA project. Journal of Clinical Epidemiology, 51, 1167–1170. doi: 10.1016/S0895-4356(98)00108-5.PubMedCrossRefGoogle Scholar
  11. 11.
    Ware, J. E., & Kosinski, M. (2003). SF-36 Physical and mental health summary scales: A manual for users of version 1. Lincoln: QualityMetric Inc.Google Scholar
  12. 12.
    Gandek, B., Sinclair, S. J., Kosinski, M., & Ware, J. E. (2004). Psychometric evaluation of the SF-36 Health Survey in medicare managed care. Health Care Financing Review, 25, 5–25.PubMedGoogle Scholar
  13. 13.
    Gandek, B., Ware, J. E., Aaronson, N. K., Apolone, G., Bjorner, J. B., Brazier, J. E., et al. (1998). Cross-validation of item selection and scoring for the SF-12 Health Survey in nine countries: Results from the IQOLA project. Journal of Clinical Epidemiology, 51, 1171–1178. doi: 10.1016/S0895-4356(98)00109-7.PubMedCrossRefGoogle Scholar
  14. 14.
    Cunningham, W. E., Nakazono, T. T., Tsai, K. L., & Hays, R. D. (2003). Do differences in methods for constructing SF-36 physical and mental health summary measures change their associations with chronic medical conditions and utilization? Quality of Life Research, 12, 1029–1035. doi: 10.1023/A:1026191016380.PubMedCrossRefGoogle Scholar
  15. 15.
    Taft, C., Karlsson, J., & Sullivan, M. (2001). Do SF-36 summary component scores accurately summarize subscale scores? Quality of Life Research, 10, 395–404. doi: 10.1023/A:1012552211996.PubMedCrossRefGoogle Scholar
  16. 16.
    Ware, J. E., & Kosinski, M. (2001). Interpreting SF-36 summary health measures: A response. Quality of Life Research, 10, 405–413. doi: 10.1023/A:1012588218728.PubMedCrossRefGoogle Scholar
  17. 17.
    Fabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4, 272–299. doi: 10.1037/1082-989X.4.3.272.CrossRefGoogle Scholar
  18. 18.
    Comrey, A. L. (1988). Factor-analytic methods of scale development in personality and clinical psychology. Journal of Consulting and Clinical Psychology, 56, 754–761. doi: 10.1037/0022-006X.56.5.754.PubMedCrossRefGoogle Scholar
  19. 19.
    Wood, J. M., Tataryn, D. J., & Gorsuch, R. L. (1996). Effects of under-and overextraction on principal axis factor analysis with varimax rotation. Psychological Methods, 1, 354–365. doi: 10.1037/1082-989X.1.4.354.CrossRefGoogle Scholar
  20. 20.
    Hays, R. D., & Morales, L. S. (2001). The RAND-36 measure of health-related quality of life. Annals of Medicine, 33, 350–357. doi: 10.3109/07853890109002089.PubMedCrossRefGoogle Scholar
  21. 21.
    Hays, R. D., Prince-Embury, S., & Chen, H. (1998). RAND-36 health status inventory. San Antonio: The Psychological Corporation.Google Scholar
  22. 22.
    Wilson, D., Parsons, J., & Tucker, G. (2000). The SF-36 summary scales: Problems and solutions. Social and Preventive Medicine, 45, 239–246.PubMedGoogle Scholar
  23. 23.
    Kline, R. B. (1998). Principles and practice of structural equation modeling. New York: The Guilford Press.Google Scholar
  24. 24.
    Anagnostopoulos, F., Niakas, D., & Pappa, E. (2005). Construct validation of the Greek SF-36 Health Survey. Quality of Life Research, 14, 1959–1965. doi: 10.1007/s11136-005-3866-8.PubMedCrossRefGoogle Scholar
  25. 25.
    Pappa, E., Kontodimopoulos, N., & Niakas, D. (2005). Validating and norming of the Greek SF-36 Health Survey. Quality of Life Research, 14, 1433–1438. doi: 10.1007/s11136-004-6014-y.PubMedCrossRefGoogle Scholar
  26. 26.
    Joreskog, K., & Sorbom, D. (1996). LISREL 8: User’s reference guide. Chicago: Scientific Software International.Google Scholar
  27. 27.
    Hays, R. D., Sherbourne, C. D., & Mazel, R. M. (1993). The RAND 36-item health survey 1.0. Health Economics, 2, 217–227. doi: 10.1002/hec.4730020305.PubMedCrossRefGoogle Scholar
  28. 28.
    Keller, S. D., Ware, J. E., Bentler, P. M., Aaronson, N. K., Alonso, J., Apolone, G., et al. (1998). Use of structural equation modeling to test the construct validity of the SF-36 Health Survey in ten countries: Results from the IQOLA project. Journal of Clinical Epidemiology, 51, 1179–1188. doi: 10.1016/S0895-4356(98)00110-3.PubMedCrossRefGoogle Scholar
  29. 29.
    Hann, M., & Reeves, D. (2008). The SF-36 scales are not accurately summarised by independent physical and mental component scores. Quality of Life Research, 17, 413–423. doi: 10.1007/s11136-008-9310-0.PubMedCrossRefGoogle Scholar
  30. 30.
    Hu, L., & Bentler, P. M. (1998). Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psychological Methods, 3, 424–453. doi: 10.1037/1082-989X.3.4.424.CrossRefGoogle Scholar
  31. 31.
    McDonald, R. P., & Ho, M. H. R. (2002). Principles and practice in reporting structural equation analyses. Psychological Methods, 7, 64–82. doi: 10.1037/1082-989X.7.1.64.PubMedCrossRefGoogle Scholar
  32. 32.
    Hays, R. D., Revicki, D., & Coyne, K. S. (2005). Application of structural equation modeling to health outcomes research. Evaluation & the Health Professions, 28, 295–309. doi: 10.1177/0163278705278277.CrossRefGoogle Scholar
  33. 33.
    Anderson, T. W., & Rubin, H. (1956). Statistical inference in factor analysis. In J. Neyman (Ed.), Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Vol. 5 (pp. 111–150). Berkeley: University of California Press.Google Scholar
  34. 34.
    Simon, G. E., Revicki, D. A., Grothaus, L., & Vonkorff, M. (1998). SF-36 summary scores: Are physical and mental health truly distinct? Medical Care, 36, 567–572. doi: 10.1097/00005650-199804000-00012.PubMedCrossRefGoogle Scholar
  35. 35.
    Nortvedt, M. W., Riise, T., Myhr, K., & Nyland, H. I. (2000). Performance of the SF-36, SF-12, and RAND-36 summary scales in a multiple sclerosis population. Medical Care, 38, 1022–1028. doi: 10.1097/00005650-200010000-00006.PubMedCrossRefGoogle Scholar
  36. 36.
    Farivar, S. S., Cunningham, W. E., & Hays, R. D. (2007). Correlated physical and mental health summary scores for the SF-36 and SF-12 Health Survey, v. 1. Health and Quality of Life Outcomes, 5, 54. doi: 10.1186/1477-7525-5-54.PubMedCrossRefGoogle Scholar
  37. 37.
    Schmitz, N., & Kruse, J. (2007). The SF-36 summary scores and their relation to mental disorders: Physical functioning may affect performance of the summary scores. Journal of Clinical Epidemiology, 60, 163–170. doi: 10.1016/j.jclinepi.2006.04.003.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Fotios Anagnostopoulos
    • 1
  • Dimitris Niakas
    • 2
  • Yannis Tountas
    • 3
  1. 1.Department of PsychologyPanteion UniversityAthensGreece
  2. 2.Faculty of Social SciencesHellenic Open UniversityPatrasGreece
  3. 3.Center for Health Services Research, Department of Hygiene and Epidemiology, Medical SchoolUniversity of AthensAthensGreece

Personalised recommendations