Quality of Life Research

, Volume 17, Issue 4, pp 627–639 | Cite as

Identifying response shift statistically at the individual level

  • Nancy E. Mayo
  • Susan C. Scott
  • Nandini Dendukuri
  • Sara Ahmed
  • Sharon Wood-Dauphinee
Article

Abstract

Objective

The purpose of this study was to explore whether a longitudinal comparison between reported and predicted health could be used as a method of identifying subjects who potentially experienced response shift.

Methods

A response-shift model was developed using data from a longitudinal study of stroke in which measures of stroke impact were made at study entry and at 1, 3, 6, and 12 months post stroke. Residuals from a random effects model were centered and used to create trajectories. This model was tested against a data set from a study in which the then-test had been administered. Twenty simulated data sets were also generated to examine how much of response shift could be attributed to random error.

Results

Group-based trajectory analysis identified seven trajectory groups. The majority (67%) of the 387 persons showed no response shift over time, whereas 15% lowered and 13% raised their health over time, disproportionally to that predicted.

Conclusion

Results of the validation studies were supportive that this methodology identifies response shift, but further research is required to compare results with other methodologies and other predictive models.

Keywords

Response shift Measurement of change Quality of life Cerebrovascular accident Longitudinal 

References

  1. 1.
    Schwartz, C. E., & Sprangers, M. A. G. (2000).Adaptation to changing health response shift in quality-of-life research(1st ed). Washington, DC: American Psychological Association.Google Scholar
  2. 2.
    Sprangers, M. A., & Schwartz, C. E. (1999). Integrating response shift into health-related quality of life research: A theoretical model. Social Science and Medicine, 48, 1507–1515.PubMedCrossRefGoogle Scholar
  3. 3.
    Oort, F. J. (2005). Using structural equation modeling to detect response shifts and true change. Quality of Life Research, 14(3), 587–598.PubMedCrossRefGoogle Scholar
  4. 4.
    Schwartz, C. E. (1999). Teaching coping skills enhances quality of life more than peer support: Results of a randomized trial with multiple sclerosis patients. Health Psychology, 18(3), 211–220.PubMedCrossRefGoogle Scholar
  5. 5.
    Scott, J., & Rantz, M. (1997). Managing chronically ill older people in the midst of the health care revolution. Nursing Administration Quarterly, 21, 55–64.PubMedGoogle Scholar
  6. 6.
    Visser, M. R., Smets, E. M., Sprangers, M. A., & De Haes, H. J. (2000). How response shift may affect the measurement of change in fatigue. Journal of Pain Symptom Manage, 20(1), 12–18.CrossRefGoogle Scholar
  7. 7.
    Ruta, D. A., Garratt, A. M., Leng, M., Russell, I. T., & MacDonald, L. M. (1994). A new approach to the measurement of quality of life. The Patient-Generated Index. Medical Care, 32(11), 1109–1126.PubMedCrossRefGoogle Scholar
  8. 8.
    Howard, G. S. (1979). Response-shift bias: A source of contamination of self-report measures. Journal of Applied Psychology, 64(2), 144–150.CrossRefGoogle Scholar
  9. 9.
    Ahmed, S., Mayo, N. E., Wood-Dauphinee, S., Hanley, J. A., & Cohen, S. R. (2004). Response shift influenced estimates of change in health-related quality of life poststroke. Journal of Clinical Epidemiology, 57(6), 561–570.PubMedCrossRefGoogle Scholar
  10. 10.
    Ahmed, S., Mayo, N. E., Wood-Dauphinee, S., Hanley, J. A., & Cohen, S. R. (2005). The structural equation modeling technique did not show a response shift, contrary to the results of the then test and the individualized approaches. Journal of Clinical Epidemiology, 58(11), 1125–1133.PubMedCrossRefGoogle Scholar
  11. 11.
    Ahmed, S., Mayo, N. E., Wood-Dauphinee, S., Hanley, J. A., & Cohen, S. R. (2005). Using the Patient Generated Index to evaluate response shift post-stroke. Quality of Life Research, 14(10), 2247–2257.PubMedCrossRefGoogle Scholar
  12. 12.
    Mayo, N. E., Wood-Dauphinee, S., Cote, R., Durcan, L., & Carlton, J. (2002). Activity, participation, and quality of life six months post-stroke. Archives of Physical Medicine and Rehabilitation, 83, 1035–1042.PubMedCrossRefGoogle Scholar
  13. 13.
    Oort, F. J., Visser, M. R. M., & Sprangers, M. A. G. (2005). An application of structural equation modeling to detect response shifts and true change in quality of life data from cancer patients undergoing invasive surgery. Quality of Life Research, 14, 599–609.PubMedCrossRefGoogle Scholar
  14. 14.
    Ahmed, S., Mayo, N. E., Corbiere, M., Wood-Dauphinee, S., Hanley, J., & Cohen, R. (2005). Change in quality of life of people with stroke over time: True change or response shift? Quality of Life Research, 14(3), 611–627.PubMedCrossRefGoogle Scholar
  15. 15.
    Brossart, D. F., Clay, D. L., & Willson, V. L. (2002). Methodological and statistical considerations for threats to internal validity in pediatric outcome data: Response shift in self-report outcomes. Journal of Pediatric Psychology, 27(1), 97–107.PubMedCrossRefGoogle Scholar
  16. 16.
    Mayo, N. E., Nadeau, L., Ahmed, S., White, C., Grad, R., & Huang, A., et al. (2007). Bridging the gap: The effectiveness of teaming a stroke coordinator with patient’s personal physician on the outcome of stroke. Age and Ageing, 37(1), 32–38.PubMedCrossRefGoogle Scholar
  17. 17.
    Schwartz, C., Bode, R., Repucci, N., Becker, J., Sprangers, M., & Fayers, P. (2006). The clinical significance of adaptation to changing health: A meta-analysis of response shift. Quality of Life Research, 15(9), 1533–1550.PubMedCrossRefGoogle Scholar
  18. 18.
    EuroQol Group. (1990). EuroQol – a new facility for the measurement of health-related quality of life. The EuroQol Group. Health Policy, 16(3), 199–208.CrossRefGoogle Scholar
  19. 19.
    Brooks, R. (1996). EuroQol: The current state of play. Health Policy, 37(1), 53–72.PubMedCrossRefGoogle Scholar
  20. 20.
    Wilson, I. B., & Cleary, P. D. (1995). Linking clinical variables with health-related quality of life. A conceptual model of patient outcomes. Journal of the American Medical Association, 273(1), 59–65.PubMedCrossRefGoogle Scholar
  21. 21.
    World Health Organization. (2001). International classification of functioning, disability and health (2nd revision ed.). Geneva.Google Scholar
  22. 22.
    Poissant, L., Mayo, N. E., Wood-Dauphinee, S., & Clarke, A. E. (2003). The development and preliminary validation of a Preference-Based Stroke Index (PBSI). Health Quality of Life Outcomes, 1(1), 43.CrossRefGoogle Scholar
  23. 23.
    Roccaforte, W. H., Burke, W. J., Bayer, B. L., & Wengel, S. P. (1992). Validation of a telephone version of the mini-mental state examination. Journal of the American Geriatrics Society, 40(7), 697–702.PubMedGoogle Scholar
  24. 24.
    Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.PubMedCrossRefGoogle Scholar
  25. 25.
    Ware, J. E., Jr., Kosinski, M., & Keller, S. D. (1994). SF-36 physical & mental scales: A user’s manual. Boston, Massachusetts: The Health Institute, New England Medical Center.Google Scholar
  26. 26.
    Ware, J. E., Jr. (2000). SF-36 health survey update. Spine, 25(24), 3130–3139.Google Scholar
  27. 27.
    Ware, J.E., Jr., & Sherbourne, C. D. (1992). The MOS 36-item Short-Form Health Survey (SF-36): I. Conceptual framework and item selection. Medical Care, 30(6), 473–481.Google Scholar
  28. 28.
    Duncan, P. W., Wallace, D., Lai, S. M., Johnson, D., Embretson, S., & Laster, L. J. (1999). The stroke impact scale version 2.0. Evaluation of reliability, validity, and sensitivity to change. Stroke, 30(10), 2131–2140.PubMedGoogle Scholar
  29. 29.
    Duncan, P. W., Bode, R. K., Lai, S. M., & Perera, S. (2003). Rasch analysis of a new stroke-specific outcome scale: The stroke impact scale. Archives of Physical Medicine and Rehabilitation, 84(7), 950–963.PubMedCrossRefGoogle Scholar
  30. 30.
    Duncan, P. W., Lai, S. M., Tyler, D., Perera, S., Reker, D. M., & Studenski, S. (2002). Evaluation of proxy responses to the stroke impact scale. Stroke, 33(11), 2593–2599.PubMedCrossRefGoogle Scholar
  31. 31.
    Côté, R., Battista, R. N., Wolfson, C., Boucher, J., Adam, J., & Hachinski, V. (1989). The Canadian Neurological Scale: validation and reliability assessment. Neurology, 39(5), 638–643.PubMedGoogle Scholar
  32. 32.
    Côté, R., Hachinski, V. C., Shurvell, B. L., Norris, J. W., & Wolfson, C. (1986). The Canadian Neurological Scale: a preliminary study in acute stroke. Stroke, 17, 731–737.PubMedGoogle Scholar
  33. 33.
    Charlson, M. E., Pompei, P., Ales, K. L., & MacKenzie, C. R. (1987). A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. Journal of Chronic Diseases, 40, 373–383.PubMedCrossRefGoogle Scholar
  34. 34.
    Farivar, S. S., Cunningham, W. E., & Hays, R. D. (2007). Correlated physical and mental health summary scores for the SF-36 and SF-12 Health Survey, V.I. Health Quality of Life Outcomes, 5, 54.CrossRefGoogle Scholar
  35. 35.
    Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis modeling change and event occurrence. New York: Oxford University Press.Google Scholar
  36. 36.
    Shaw, J. W., Johnston, J. A., & Coons, S. J. (2005). US evaluation of the EQ-5D health states: Development and testing of the D1 valuation model. Medical Care, 43, 203–220.PubMedCrossRefGoogle Scholar
  37. 37.
    Jones, B. L., Nagin, D. S., & Roeder, K. (2001). A SAS procedure based on mixture models for estimating developmental trajectories. Sociological Methods Research, 29(3), 374–393.CrossRefGoogle Scholar
  38. 38.
    Nagin, D. S., & Tremblay, R. E. (2001). Analyzing developmental trajectories of distinct but related behaviors: A group-based method. Psychological Methods, 6(1), 18–34.PubMedCrossRefGoogle Scholar
  39. 39.
    Howard, G. S. (1979). Internal invalidity in pretest-posttest self-report evaluations and a re-evaluation of retrospective pretests. Applied Psychological Measurement, 3(1), 1–23.CrossRefGoogle Scholar
  40. 40.
    Sprangers, M. A., Tempelaar, R., van den Heuvel, W. J., & de Haes, H. C. (2002). Explaining quality of life with crisis theory. Psycho-oncology, 11(5), 419–426.PubMedCrossRefGoogle Scholar
  41. 41.
    Norman, G. (2003). Hi! How are you? Response shift, implicit theories and differing epistemologies. Quality of Life Research, 12, 239–249.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Nancy E. Mayo
    • 1
    • 2
    • 3
    • 4
  • Susan C. Scott
    • 1
  • Nandini Dendukuri
    • 1
    • 3
  • Sara Ahmed
    • 5
  • Sharon Wood-Dauphinee
    • 2
    • 3
  1. 1.Division of Clinical EpidemiologyMcGill University Health CenterMontrealCanada
  2. 2.Department of Medicine and School of Physical and Occupational TherapyMcGill UniversityMontrealCanada
  3. 3.Department of Epidemiology and BiostatisticsMcGill UniversityMontrealCanada
  4. 4.Division of Clinical Epidemiology, R4.29Royal Victoria HospitalMontrealCanada
  5. 5.School of Physical and Occupational TherapyMcGill UniversityMontrealCanada

Personalised recommendations