Advertisement

Quality of Life Research

, Volume 16, Issue 8, pp 1335–1345 | Cite as

Testing the structural and cross-cultural validity of the KIDSCREEN-27 quality of life questionnaire

  • Stephane Robitail
  • Ulrike Ravens-Sieberer
  • Marie-Claude Simeoni
  • Luis Rajmil
  • Jeanet Bruil
  • Mick Power
  • Wolfgang Duer
  • Bernhard Cloetta
  • Ladislav Czemy
  • Joanna Mazur
  • Agnes Czimbalmos
  • Yannis Tountas
  • Curt Hagquist
  • Jean Kilroe
  • Pascal AuquierEmail author
  • the KIDSCREEN Group
Original Paper

Abstract

Objectives

The aim of this study is to assess the structural and cross-cultural validity of the KIDSCREEN-27 questionnaire.

Methods

The 27-item version of the KIDSCREEN instrument was derived from a longer 52-item version and was administered to young people aged 8–18 years in 13 European countries in a cross-sectional survey. Structural and cross-cultural validity were tested using multitrait multi-item analysis, exploratory and confirmatory factor analysis, and Rasch analyses. Zumbo’s logistic regression method was applied to assess differential item functioning (DIF) across countries. Reliability was assessed using Cronbach’s alpha.

Results

Responses were obtained from n = 22,827 respondents (response rate 68.9%). For the combined sample from all countries, exploratory factor analysis with procrustean rotations revealed a five-factor structure which explained 56.9% of the variance. Confirmatory factor analysis indicated an acceptable model fit (RMSEA = 0.068, CFI = 0.960). The unidimensionality of all dimensions was confirmed (INFIT: 0.81–1.15). Differential item functioning (DIF) results across the 13 countries showed that 5 items presented uniform DIF whereas 10 displayed non-uniform DIF. Reliability was acceptable (Cronbach’s α = 0.78–0.84 for individual dimensions).

Conclusions

There was substantial evidence for the cross-cultural equivalence of the KIDSCREEN-27 across the countries studied and the factor structure was highly replicable in individual countries. Further research is needed to correct scores based on DIF results. The KIDSCREEN-27 is a new short and promising tool for use in clinical and epidemiological studies.

Keywords

Cross-cultural equivalence Health-related Quality of Life Item response theory Pediatric Questionnaire 

Notes

Acknowledgements

Source of support: The KIDSCREEN project was financed by a grant from the European Commission (QLG-CT-2000-00751) within the EC 5th Framework-Programme “Quality of Life and Management of Living Resources”.

References

  1. 1.
    World Health Organization Regional Office for Europe (1996). The Ljubljana charter on reforming health care. Paper presented at the Ljubljana Conference, Ljubljana.Google Scholar
  2. 2.
    Ravens-Sieberer, U., & Bullinger, M. (1998). Assessing health-related quality of life in chronically ill children with the German KINDL: First psychometric and content analytical results. Quality of Life Research, 7, 399–407.PubMedCrossRefGoogle Scholar
  3. 3.
    Eiser, C., Havermans, T., Craft, A., & Kernahan, J. (1995). Development of a measure to assess the perceived illness experience after treatment for cancer. Archives of Disease in Childhood, 72, 302–307.PubMedCrossRefGoogle Scholar
  4. 4.
    Vogels, T., Verrips, G. H. W., Verloove-Vanhorick, S. P., et al. (1998). Measuring health-related quality of life in children: the development of the TACQOL parent form. Quality of Life Research, 7, 457–465.PubMedCrossRefGoogle Scholar
  5. 5.
    Simeoni, M. C., Auquier, P., Antoniotti, S., Sapin, C., & San Marco, J. L. (2000). Validation of a French health-related quality of life instrument for adolescents: The VSP-A. Quality of Life Research, 9, 393–403.PubMedCrossRefGoogle Scholar
  6. 6.
    Rajmil, L., Serra-Sutton, V., Fernandez-Lopez, J. A., et al. (2004). [The Spanish version of the German health-related quality of life questionnaire for children and adolescents: The Kindl]. Anales de Pediatría (Barcelona), 60, 514–521.CrossRefGoogle Scholar
  7. 7.
    Serra-Sutton, V., Herdman, M., Rajmil, L., et al. (2002). [Cross-cultural adaptation to Spanish of the Vecu et Sante Percue de l’Adolescent (VSP-A): A generic measure of the quality of life of adolescents]. Revista Española de Salud Pública, 76, 701–712.PubMedCrossRefGoogle Scholar
  8. 8.
    Rajmil, L., Herdman, M., De Sanmamed, M. J. F., et al. (2004). Generic health-related quality of life instruments in children and adolescents: A qualitative analysis of content. Journal of Adolescent Health, 34, 37–45.PubMedCrossRefGoogle Scholar
  9. 9.
    Patrick, D. L., & Chiang, Y. P. (2000). Measurement of health outcomes in treatment effectiveness evaluations: Conceptual and methodological challenges. Medical Care, 38, II14–25.PubMedGoogle Scholar
  10. 10.
    Schmidt, S., & Bullinger, M. (2003). Current issues in cross-cultural quality of life instrument development. Archives of Physical Medicine and Rehabilitation, 84, S29–S34.PubMedCrossRefGoogle Scholar
  11. 11.
    Herdman, M., Fox-Rushby, J., & Badia, X. (1998). A model of equivalence in the cultural adaptation of HRQoL instruments: The universalist approach. Quality of Life Research, 7, 323–335.PubMedCrossRefGoogle Scholar
  12. 12.
    Ravens-Sieberer, U., Gosch, A., Abel, T., et al. (2001). Quality of life in children and adolescents: A European public health perspective. Sozial-Und Praventivmedizin, 46, 294–302.PubMedCrossRefGoogle Scholar
  13. 13.
    Ravens-Sieberer, U., Auquier, P., Erhart, M., et al. The KIDSCREEN-27 quality of life measure for children and adolescents – psychometric results from a cross-cultural survey in 13 European countries. Quality of Life Research. doi:  10.1007/s11136-007-9240-2.
  14. 14.
    Mokken, R. (1971). A theory and procedure of scale analysis. The Hague: Mouton, Berlin De Gruyter.Google Scholar
  15. 15.
    Mokken, R., & Lewis, C. (1982). A nonparametric approach to the analysis of dichotomous item responses. Applied Psychological Measurement, 6, 417–430.Google Scholar
  16. 16.
    Molenaar, I. (1982). Mokken sclaing revisited. Kwantitatieve Methoden, 3, 145–164.Google Scholar
  17. 17.
    Wright, B., & Masters, G. (1982). Rating scale analysis. Chicago: MESA Press.Google Scholar
  18. 18.
    Wright, B., & Stone, M. (1979). Best test design. Chicago: MESA Press.Google Scholar
  19. 19.
    Zumbo, B. (1999). A handbook on the theory and methods of differential item functioning (DIF): Logistic regression modeling as a unitary framework for binary and Likert-type (Ordinal). Item scores. Ottawa, ON: Directorate of Human Resources Research and Evaluation, Department of National Defense.Google Scholar
  20. 20.
    Ware, J., Harris, W., & Gandek, B. (1997). MAP-R for Windows: Multitrait:multi-item analysis program—Revised user’s guide. Boston, MA: Health Assessment Laboratory.Google Scholar
  21. 21.
    Thompson, B. (2004). Exploratory and confirmatory factor analysis: Understanding concepts and applications. American Psychological Association.Google Scholar
  22. 22.
    Rajmil, L., Berra, S., von-Rueden, U., Tebe, C., Erhart, M., Gosh, A., et al. (2004). Representativity of 12 national surveys of children and adolescents 8–18 years old included in the KIDSCREEN HRQOL study. Quality of Life Research, 13(9), 1576.Google Scholar
  23. 23.
    Veldman, D. (1978). Fortran programming for the behavioural sciences. New York: Holt, Rinehart, & Winston.Google Scholar
  24. 24.
    Jöreskog, K. (1990). New developments in LISREL: Analysis of ordinal variables using polychoric correlations and weighted least squares. Quality and Quantity, 24, 387–404.CrossRefGoogle Scholar
  25. 25.
    Maruyama, G. (1998). Basic of structural equation modeling. Thousand Oaks, CA: Sage.Google Scholar
  26. 26.
    Bollen, K., & Long, J. (1993). Alternative ways of assessing model fit. Testing structural equation models. Sage Publications.Google Scholar
  27. 27.
    Flora, D. B., & Curran, P. J. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9, 466–491.PubMedCrossRefGoogle Scholar
  28. 28.
    Jöreskog, K. (1971). Simultaneous factor analysis in several populations. Psychometrika,36, 409–426.CrossRefGoogle Scholar
  29. 29.
    Campbell, D., & Fiske, D. (1959). Convergent and discriminant validation by multitrait-multimethod matrix. Psychological Bulletin, 56, 81–105.PubMedCrossRefGoogle Scholar
  30. 30.
    McHorney, C. A., Ware, J. E. Jr., Lu, J. F., & Sherbourne, C. D. (1994). The MOS 36-item Short-Form Health Survey (SF-36): III. Tests of data quality, scaling assumptions, and reliability across diverse patient groups. Medical Care, 32, 40–66.PubMedCrossRefGoogle Scholar
  31. 31.
    Cronbach, L. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16, 297–334.CrossRefGoogle Scholar
  32. 32.
    Nunnally, J., & Bernstein, I. (1994). Psychometric theory. New York: McGraw-Hill, Inc.Google Scholar
  33. 33.
    Masters, G. (1982). A Rasch model for partial credit scoring. Psychometrika, 47, 149–174.CrossRefGoogle Scholar
  34. 34.
    Mellenbergh, G. (1982). Contingency table models for assessing item bias. Journal of Educational Statistics, 7, 105–107.CrossRefGoogle Scholar
  35. 35.
    Martin, M., Blaisdell, B., Kwong, J. W., & Bjorner, J. B. (2004). The Short-Form Headache Impact Test (HIT-6) was psychometrically equivalent in nine languages. Journal of Clinical Epidemiology, 57, 1271–1278.PubMedCrossRefGoogle Scholar
  36. 36.
    Linacre, J. (2003). A user guide to Winsteps. Rasch model computer program. Chicago, IL: MESA edition.Google Scholar
  37. 37.
    Jöreskog, K., & Sörbom, D. (1996). LISREL 8:User’s reference guide. Chicago: Scientific Software International.Google Scholar
  38. 38.
    Jöreskog, K., & Sörbom, D. (1988). PRELIS – A program for multivariate data screening and data summarization. A preprocessor for LISREL (2nd ed.). Chicago, Il: Scientific Software, Inc.Google Scholar
  39. 39.
    Ravens-Sieberer, U., Gosch, A., Rajmil, L., et al. (2006). The KIDSCREEN-52 quality-of-life measure for children and adolescents: Psychometric results from a cross-cultural survey in 13 European countries. Expert Review of Pharmacoeconomics & Outcomes Research, 5(3), 353–364.CrossRefGoogle Scholar
  40. 40.
    Warschburger, P., Landgraf, J., Petermann, F., & Freidel, K. (2003). Health-related quality of life in children assessed by their parents: Evaluation of the psychometric properties of the CHQ-PF50 in two German clinical samples. Quality of Life Research, 12, 291–301.PubMedCrossRefGoogle Scholar
  41. 41.
    Varni, J., Seid, M., & Kurtin, P. (2001). PedsQL 4.0: Reliability and validity of the Pediatric Quality of Life Inventory version 4.0 generic core scales in healthy and patient populations. Medical Care, 39, 800–812.PubMedCrossRefGoogle Scholar
  42. 42.
    Gorsuch, R. (1983). Factor analysis. Hillsdale, NJ: Erlbaum.Google Scholar
  43. 43.
    Hu, L., & Bentler, P. (1995). Evaluating model fit. In R. Hoyle (Ed.), Structural equation modeling: Concepts, Issues, and Applications (pp. 76—99). Thousand Oaks, CA: Sage.Google Scholar
  44. 44.
    McHorney, C., & Tarlov, A. (1995). Individual-patient monitoring in clinical practice: Are available health status surveys adequate? Quality of Life Research, 4, 293–307.PubMedCrossRefGoogle Scholar
  45. 45.
    Scientific Advisory Committee of the Medical Outcomes Trust (2002). Assessing health status and quality-of-life instruments: Attributes and review criteria. Quality of Life Research, 11, 193–205.CrossRefGoogle Scholar
  46. 46.
    Crane, P., Hart, D., Gibbons, L., & Cook, K. (2006). A 37-item shoulder functional status item pool had negligible differential item functioning. Journal of Clinical Epidemiology, 59, 478–484.PubMedCrossRefGoogle Scholar
  47. 47.
    Erhart, M., Ravens-Sieberer, U., Hagquist, C., Robitail, S., & van Buuren, S. (2006). Does correcting for differential item functioning (DIF) using two different techniques enhances the validity and diagnostic quality of adolescents HRQoL test scores? Quality of Life Research, 15, A113–A114.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Stephane Robitail
    • 1
  • Ulrike Ravens-Sieberer
    • 2
  • Marie-Claude Simeoni
    • 1
  • Luis Rajmil
    • 3
  • Jeanet Bruil
    • 4
  • Mick Power
    • 5
  • Wolfgang Duer
    • 6
  • Bernhard Cloetta
    • 7
  • Ladislav Czemy
    • 8
  • Joanna Mazur
    • 9
  • Agnes Czimbalmos
    • 10
  • Yannis Tountas
    • 11
  • Curt Hagquist
    • 12
  • Jean Kilroe
    • 13
  • Pascal Auquier
    • 1
    • 14
    • 15
    Email author
  • the KIDSCREEN Group
  1. 1.EA 3279, School of MedicinePerceived Health Research UnitMarseilleFrance
  2. 2.School of Public Health, WHO Collaborating Center for Child and Adolescent Health PromotionUniversity of BielefeldBielefeldGermany
  3. 3.Agency for QualityResearch and Assessment in Health (AQuRAHealth)BarcelonaSpain
  4. 4.Child Health Unit, Prevention and Physical ActivityTNO Quality of LifeLeidenThe Netherlands
  5. 5.Department of PsychiatryUniversity of Edinburgh, Royal Edinburgh HospitalEdinburghScotland
  6. 6.Ludwig Boltzmann-Institute for Sociology of Health and MedicineUniversity of ViennaViennaAustria
  7. 7.Unit for Health Research, Institute for Social and Preventive MedicineUniversity of BernBernSwitzerland
  8. 8.Prague Psychiatric CenterPragueCzech Republic
  9. 9.Department of EpidemiologyNational Research Institute of Mother & ChildWarsawPoland
  10. 10.Health Promotion and DevelopmentCentre Child Health DepartmentBudapestHungary
  11. 11.Centre for Health Services Research and Hellenic Society for Health Promotion and EducationAthensGreece
  12. 12.Karlstad UniversityKarlstadSweden
  13. 13.HSEProgramme of Action for ChildrenDublinIreland
  14. 14.Service de Santé Publique. Faculté de MédecineMarseille France
  15. 15.Department of Public HealthTimone University HospitalMarseillesFrance

Personalised recommendations