Quality of Life Research

, Volume 14, Issue 3, pp 611–627 | Cite as

Change in quality of life of people with stroke over time: True change or response shift?

  • Sara AhmedEmail author
  • Nancy E. Mayo
  • Marc Corbiere
  • Sharon Wood-Dauphinee
  • James Hanley
  • Robin Cohen


In many studies, assessments of change in self-report measures such as health-related quality of life must account for potential response shift, including reconceptualization and changes in internal standards of measurement. Objective: The objective of our study was to compare healthy controls and individuals with stroke on the extent to which changes in internal standards and reconceptualization of health related quality of life (HRQL) occurs over the first 6 months post-stroke. Methods: Confirmatory factor analysis was used to assess invariance of the SF-36 measurement model over time among 238 individuals with stroke and 392 controls, separately. This procedure assessed changes over time in the factor loadings, variances, and covariances of responses, and compared the extent of change between individuals with stroke and those in the control group. In addition a multisample comparison was made between individuals with stroke and members of the control group at the first evaluation in order to assess invariance of the SF-36 measurement model between the groups. The controls were considered to be a ‘proxy’ for the stroke cohort prior to the stroke. Results: We found no evidence of reconceptualization and changes in internal standards over time when the groups were assessed separately. There was a significant difference in the factor covariances (reconceptualization) between the two groups at the time of the first evaluation. However, measurement error was also significant for this comparison. Conclusion: This study indicates that the improvement in HRQL over time is real rather than a result of reconceptualization or a recalibration. If response shift does occur with stroke it is likely to be mediated by the event itself and not the recovery process.


Change Confirmatory factor analysis Health-related quality of life outcomes Response shift Stroke 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Williams, LS, Weinberger, M, Harris, LE, Clark, DO, Biller, J 1999Development of a stroke-specific quality of life scale.Stroke3013621369Google Scholar
  2. Duncan, PW, Samsa, GP, Weinberger, M,  et al. 1997Health status of individuals with mild stroke.Stroke28740745Google Scholar
  3. Haan, R, Aaronson, N, Limburg, M, Hewer, RL, van, Crevel H 1993Measuring quality of life in stroke.Stroke24320327Google Scholar
  4. King, RB 1996Quality of life after stroke.Stroke2714671472Google Scholar
  5. Duncan, PW, Wallace, D, Lai, SM, Johnson, D, Embretson, S, Laster, LJ 1999The Stroke Impact Scale Version 2.0. Evaluation of reliability, validity, and sensitivity to change.Stroke3021312140Google Scholar
  6. Allison, PJ, Locker, D, Feine, JS 1997Quality of life: A dynamic construct.Soc Sci Med45221230Google Scholar
  7. Cronbach, LJ, Furby, L 1970How should we measure ‘change’–Or should we?Psychol Bull746880Google Scholar
  8. Sprangers, MA, Schwartz, CE 1999Integrating response shift into health-related quality of life research: A theoretical model.Soc Sci Med4815071515Google Scholar
  9. Golembiewski, RT, Yeager, S 1975Measuring change and persistence in human affairs: Types of change generated by OD designs.J Appl Behav Sci12133157Google Scholar
  10. Mayo, NE 1993Epidemiology and recovery.Phys Med Reh: State Art Rev7125Google Scholar
  11. Duncan, PW, Goldstein, LB, Horner, RD, Landsman, PB, Samsa, GP, Matchar, DB 1994Similar motor recovery of upper and lower extremities after stroke.Stroke2511811188Google Scholar
  12. Wade, D, Langton, HR 1987Functional abilities after stroke: The first three months.J Neurol Neurosur Psych50177182Google Scholar
  13. Schwartz, CE, Sprangers, MAG 2000Adaptation to Changing Health: Response Shift in Quality-of-life research1American Psychological AssociationWashington, DCGoogle Scholar
  14. engs, TO, Yu, M, Luistro, E 2001Health-related quality of life after stroke–A comprehensive review.Stroke32964971Google Scholar
  15. Breetvelt, IS, Dam, FS 1991Underreporting by cancer patients: The case of response-shift.Soc Sci Med32981987Google Scholar
  16. Statistics Canada1999How healthy are Canadians?Government of CanadaOttawa9119Google Scholar
  17. Decker, SD, Schulz, R 1985Correlates of life satisfaction and depression in middle-aged and elderly spinal cord-injured persons.Am J Occup Ther39740745Google Scholar
  18. Millsap, RE, Sandra, B 1988Alpha, beta, and gamma change in evaluation research: A structural equation approach.J Appl Psychol73574584Google Scholar
  19. Norman, P 1996The interpretation of change in verbal reports: Implications for health psychology.Psychol Health11301314Google Scholar
  20. Schmitt, N 1982The use of analysis of covariance structures to assess beta and gamma change.Source. Mult Behav Res17343358Google Scholar
  21. Randolph, WA 1989How can OD consultants and researchers assess gamma change? A comparison of two analytical procedures.J Manage15633648Google Scholar
  22. Millsap RE, Sandra B. Alpha, beta, and gamma change in evaluation research: A structural equation approach. J Appl Psychol 1988; 73(3).Google Scholar
  23. Schaubroeck, J 1989Confirmatory factor analytic procedures for assessing change during organizational entry.J Appl Psychol74892900Google Scholar
  24. Kline, RB 1998Principles and Practice of Structural Equation Modeling.The Guilford PressNew YorkGoogle Scholar
  25. Lindell, MK 1980Equivocality of factor incongruence as an indicator of type of change in OD Interventions.Acad Manage Rev5105107Google Scholar
  26. Schwartz, CE, Sprangers, MA 1999Methodological approaches for assessing response shift in longitudinal health-related quality-of-life research.Soc Sci Med4815311548Google Scholar
  27. Bernhard, J, Lowy, A, Maibach, R, Hurny, C 2001Response shift in the perception of health for utility evaluation: An explorative investigation.Eur J Cancer3717291735Google Scholar
  28. Sprangers, MA, Dam, FS, Broersen, J,  et al. 1999Revealing response shift in longitudinal research on fatigue–the use of the thentest approach.Acta Oncol38709718CrossRefPubMedGoogle Scholar
  29. Postulart, D, Adang, EM 2000Response shift and adaptation in chronically ill patients.Med Decis Making20186193Google Scholar
  30. Mayo, NE, Wood-Dauphinee, S, Cote, R, Durcan, L, Carlton, J 2001Activity, participation, and quality of life six months post-stroke.Arch Phys Med Rehab8310351042Google Scholar
  31. Ware, JE,Jr, Snow, KK, Kosinski, M, Gandek, B 1993Health Survey: Manual & Interpretation Guide.The Health Institute, New England Medical CenterBoston, MAGoogle Scholar
  32. McHorney, CA, Ware, JE,Jr, Lu, JF, Sherbourne, CD 1994The MOS 36-item Short-Form Health Survey (SF-36): III. Tests of data quality, scaling assumptions, and reliability across diverse patient groups.Med Care324066PubMedGoogle Scholar
  33. McHorney, CA, Ware, JE,Jr, Rogers, W, Raczek, AE, Lu, JF 1992The validity and relative precision of MOS short- and long-form health status scales and Dartmouth COOP charts. Results from the Medical Outcomes Study.Med Care30(Suppl 5)MS253MS265Google Scholar
  34. Brazier, JE, Harper, R, Jones, N,  et al. 1992Validating the SF-36 health survey questionnaire: New outcome measure for primary care.Br Med J305160164Google Scholar
  35. Modan, B, Wagener, DK 1992Some epidemiological aspects of stroke: Mortality/morbidity trends, age, sex, race, socioeconomic status.Stroke2312301236Google Scholar
  36. Dorman, P, Slattery, J, Farrell, B, Dennis, M, Sandercock, P 1998Qualitative comparison of the reliability of health status assessments with the EuroQol and SF-36 questionnaires after stroke. United Kingdom Collaborators in the International Stroke Trial.Stroke296368Google Scholar
  37. Ware, JE,Jr, Kosinski, M, Keller, S–D 1994SF-36 Physical & Mental Scales: A User’s Manual.The Health Institute, New England Medical CenterBoston, MassachusettsGoogle Scholar
  38. Dorman, PJ, Dennis, M, Sandercock, P 1999How do scores on the EuroQol relate to scores on the SF-36 after stroke?Stroke3021462151Google Scholar
  39. Putten, JJ, Hobart, JC, Freeman, JA, Thompson, AJ 1999Measuring change in disability after inpatient rehabilitation: Comparison of the responsiveness of the Barthel index and the Functional Independence Measure.J Neurol Neurosurg Psychiatr66480484Google Scholar
  40. Harwood, RH, Ebrahim, S 2000A comparison of the responsiveness of the Nottingham extended activities of daily living scale, London handicap scale and the SF-36.Disabil Rehabil22786793Google Scholar
  41. Anderson, C, Laubscher, S, Burns, R 1996Validation of the Short Form 36 (SF-36) health survey questionnaire among stroke patients.Stroke2718121816Google Scholar
  42. McHorney, CA, Ware, JE, Raczek, AE 1993The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and Clincal Tests of Validity in Measuring physical and mental health constructs.Med Care31247263PubMedGoogle Scholar
  43. Cote, R, Battista, RN, Wolfson, C, Boucher, J, Adam, J, Hachinski, V 1989The Canadian neurological scale: Validation and reliability assessment.Neurology39638643Google Scholar
  44. Folstein, MF, Folstein, SE, McHugh, PR 1975‘Mini-mental state’. A practical method for grading the cognitive state of patients for the clinician.J Psychiatr Res12189198CrossRefPubMedGoogle Scholar
  45. Granger, CV, Hamilton, BB 1990Measurement of stroke rehabilitation outcome in the 1980s.Stroke21(Suppl 9)II46II47Google Scholar
  46. Mahoney, FI, Barthel, DW 1965Functional evaluation: The Barthel lndex.Md St Med J146165Google Scholar
  47. Loewen, SC, Anderson, BA 1988Reliability of the Modified Motor Assessment Scale and the Barthel Index [see comments].Phys Ther6810771081Google Scholar
  48. Shinar, D, Gross, CR, Mohr, JP,  et al. 1985Interobserver variability in the assessment of neurologic history and examination in the Stroke Data Bank.Arch Neurol42557565Google Scholar
  49. Roy, CW, Togneri, J, Hay, E, Pentland, B 1988An inter-rater reliability study of the Barthel Index.Int J Rehabil Res116770Google Scholar
  50. Granger, CV, Dewis, LS, Peters, NC, Sherwood, CC, Barrett, JE 1979Stroke rehabilitation: Analysis of repeated Barthel index measures.Arch Phys MedRehabil601417Google Scholar
  51. Gresham, GE, Phillips, TF, Labi, ML 1980ADL status in stroke: relative merits of three standard indexes.Arch Phys Med Rehabil61355358Google Scholar
  52. Wade, DT, Langton, Hewer R 1987Functional abilities after stroke: Measurement, natural history and prognosis.J Neurol Neurosurg Psychiatr50177182Google Scholar
  53. Wellwood, I, Dennis, MS, Warlow, CP 1995A comparison of the Barthel Index and the OPCS disability instrument used to measure outcome after acute stroke.Age Ageing245457Google Scholar
  54. McDowell, I, Newell, C 1996Measuring Health: A Guide to Rating Scales and Questionnaires2Oxford University PressNew YorkGoogle Scholar
  55. Wood-Dauphinee, SL, Opzoomer, MA, Williams, JI, Marchand, B, Spitzer, WO 1988Assessment of global function: The Reintegration to Normal Living Index.Arch Phys Med Rehabil69583590Google Scholar
  56. Wood-Dauphinee, S, Williams, JI 1987Reintegration to normal living as a proxy to quality of life.J Chron Dis40491502Google Scholar
  57. Bentler PM. EQS Structural Equation Program Manual. Encino, 1995.Google Scholar
  58. Hoyle, RH 1995Structural Equation Modeling: Concepts, Issues, and Application.Sage Publications, c1995Thousand OaksGoogle Scholar
  59. Kaplan, D 1955Structural Equation Modeling: Foundations and extensions.Sage Publications, c2000Thousand Oaks, CAGoogle Scholar
  60. Hayduk, LA 1987Structural Equation Modeling with LISREL: Essentials and Advances.Johns Hopkins University Press, c1987BaltimoreGoogle Scholar
  61. Bollen, KA 1989Structural Equations with Latent Variables.Wiley and SonsNew YorkGoogle Scholar
  62. Siddiqui, O, Ali, MW 1999Linear structural equation model in analyzing quality-of-life-data from clinical trials.J Biopharm Stat9661681Google Scholar
  63. Satorra, A, Bentler, PM 1994Corrections to test statistics and standard errors in covariance structure analysis.Eye, Alexander, Clogg, Clifford, C eds. Latent Variables Analysis: Applications for Developmental Research.Sage Publications, Inc.Thousand Oaks, CA, US399419Google Scholar
  64. Curran, PS, West, SG, Finch, JF 1996The Robustness of test Statistics to nonnormality and specification error in confirmatory factor analysis.Psychol Meth11629Google Scholar
  65. Nevitt J, Hancock GR. Improving the root mean square error of approximation for nonnormal conditions in structural equation modeling. 2000; 68(3): 251–268.Google Scholar
  66. oreskog, KG, Sorbom, D 1979Advances in Factor Analysis and Structural Equation Models.ABT BooksCambridge, MAGoogle Scholar
  67. Jarnlo, GB, Ceder, L, Thorngren, KG 1984Early rehabilitation at home of elderly patients with hip fractures and consumption of resources in primary care.Scand J Prim Health Care2105112Google Scholar
  68. Hopman, WM, Towheed, T, Anastassiades, T,  et al. 2000Canadian normative data for the SF-36 health survey.Can Med Assoc J163265271Google Scholar
  69. Jorgensen, HS, Nakayama, H, Raaschou, HO,  et al. 1995Outcome and time course of recovery in stroke. Part II: Time course of recovery. The Copenhagen Stroke Study.Arch Phys Med Rehab76406412Google Scholar
  70. Armenakis, AA, Wilmoth, JN 1977An algorithm for assessing factor structure congruence.Educ Psychol Measure37213214Google Scholar
  71. Randolph, WA, Elloy, DF 1989A comparison of two methods for evaluating the similarity of factor analytic solutions.J Manage15633648Google Scholar
  72. Schmitt, N, Pulakos, E, Lieblein, A 1984Comparison of three techniques to assess group-level beta and gamma change.J Appl Psychol8249260Google Scholar
  73. Terborg, JR, Howard, GS, Maxwell, SE 1980Evaluating planned organizational change: A method for assessing alpha, beta, and gamma change.Acad Manage Rev5109121Google Scholar
  74. Muthen, BO, Curran, PJ 1997General longitudinal modeling of individual differences in experimental designs: A latent variable framework for analysis and power estimation.Psychol Meth2371402Google Scholar
  75. Willett, JB, Sayer, AG 1994Using covariance structure-analysis to detect correlates and predictors of individual change over time.Psychol Bull116363381Google Scholar
  76. McHorney, CA, Ware, JE, Raczek, AE 1993The MOS 36-Item Short-Form Health Survey (SF-36): II. Psychometric and clinical tests of validity in measuring physical and mental health constructs.Med Care31247263PubMedGoogle Scholar
  77. Simon, GE, Revicki, DA, Grothaus, L, Vonkorff, M 1998SF-36 summary scores: are physical and mental health truly distinct?Med Care36567572Google Scholar
  78. Nortvedt, MW, Riise, T, Myhr, K, Nyland, HI 2000Performance of the SF-36, SF-12, and RAND-36 summary scales in a multiple sclerosis population.Med Care38(28 ref)10221028Google Scholar
  79. University of Kansas Pepper Center for Aging. Stroke Toolbox. 2002. Scholar
  80. Ahmed, S, Mayo, NE, Wood-Dauphinee, S, Hanley, J 2001Response Shift In The Assessment Of Health Related Quality of Life (HRQL) Post-Stroke.Qual Life Res10202204Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Sara Ahmed
    • 1
    • 13
    Email author
  • Nancy E. Mayo
    • 2
    • 3
  • Marc Corbiere
    • 4
  • Sharon Wood-Dauphinee
    • 5
    • 6
    • 7
  • James Hanley
    • 8
    • 9
  • Robin Cohen
    • 10
    • 11
    • 12
  1. 1.Department of Epidemiology and Biostatistics, Faculty of MedicineMcGill UniversityQuebecCanada
  2. 2.Division of Clinical EpidemiologyRoyal Victoria HospitalQuebec Canada
  3. 3.Faculty of Medicine, School of Physical and Occupational TherapyMcGill UniversityCanada
  4. 4.Michael Smith Foundation for Health ResearchUniversity of British ColumbiaCanada
  5. 5.School of Physical and Occupational TherapyCanada
  6. 6.Faculty of Medicine, Department of Epidemiology and BiostatisticsMcGill UniversityCanada
  7. 7.Division of Clinical EpidemiologyRoyal Victoria HospitalCanada
  8. 8.Division of Clinical EpidemiologyRoyal Victoria HospitalCanada
  9. 9.Department of Epidemiology and BiostatisticsMcGill UniversityCanada
  10. 10.National Cancer Institute of Canada and Canadian Institutes of Health ResearchCanada
  11. 11.Departments of Oncology and MedicineMcGill UniversityCanada
  12. 12.McGill University Health Center Medical ScientistCanada
  13. 13.Division of Clinical Epidemiology Royal Victoria HospitalQuebecCanada

Personalised recommendations