Advertisement

Quality evaluation and preferences of healthcare services: the case of telemedicine in Sardinia

  • Stefania Capecchi
  • Marta Meleddu
  • Manuela Pulina
Article
  • 70 Downloads

Abstract

This paper explores preferences towards cardiological e-health services, assessed on a representative quota sample of potential users in Sardinia, Italy. By a mixture model approach, it is possible to observe individual response behaviour expressed in terms of agreement and heterogeneity. While a substantial heterogeneity emerges for modes of consultation, the ranking of respondents’ preferences is clearly depicted for the location. The findings highlight a strong preference for a cardiological consultation at the family doctor and for the province of residence as a location. Notably, education and age are the covariates that most importantly affect choice processes.

Keywords

E-medicine Evaluation Heterogeneity Mixture models 

References

  1. Agresti, A.: Analysis of Ordinal Categorical Data, 2nd edn. Wiley, Hoboken (2010)CrossRefGoogle Scholar
  2. Aneja, S., Ross, J.S., Wang, Y., Matsumoto, M., Rodgers, G.P., Bernheim, S.M., Rathore, S.S., Krumholz, H.M.: US cardiologist workforce from 1995 to 2007: modest growth, lasting geographic maldistribution especially in rural areas. Health Aff. 30(12), 2301–09 (2011)CrossRefGoogle Scholar
  3. Basoglu, N., Daim, T.U., Topacan, U.: Determining patient preferences for remote monitoring. J. Med. Syst. 36(3), 1389–401 (2012)CrossRefGoogle Scholar
  4. Capecchi, S., Iannario, M.: Gini heterogeneity index for detecting uncertainty in ordinal data surveys. METRON 74(2), 223–232 (2016)CrossRefGoogle Scholar
  5. Capecchi, S., Piccolo, D.: Dealing with heterogeneity in ordinal responses. Qual. Quant. 51(5), 2375–2393 (2017)CrossRefGoogle Scholar
  6. Cowie, M.R., Bax, J., Bruining, N., Cleland, J.G., Koehler, F., Malik, M., Pinto, F., van der Velde, E., Vardas, P.: E-Health: a position statement of the European Society of Cardiology. Eur. Heart J. 37(1), 63–66 (2016)CrossRefGoogle Scholar
  7. CRENoS: Economia della Sardegna. \(24^{\circ }\) Rapporto, CUEC, Cagliari (2017)Google Scholar
  8. D’Elia, A., Piccolo, D.: A mixture model for preference data analysis. Comput. Stat. Data Anal. 49(3), 917–934 (2005)CrossRefGoogle Scholar
  9. Dávalos, M.E., French, M.T., Burdick, A.E., Simmons, S.C.: Economic evaluation of telemedicine: review of the literature and research guidelines for benefit–cost analysis. Telemed. e Health 15(10), 933–948 (2009)CrossRefGoogle Scholar
  10. de Bekker-Grob, E.W., Ryan, M., Gerard, K.: Discrete choice experiments in health economics: a review of the literature. Health Econ. 21(2), 145–172 (2012)CrossRefGoogle Scholar
  11. European Commission: Europa 2020, a European strategy for smart, sustainable and inclusive growth. http://ec.europa.eu/eu2020/pdf (2010). Accessed 15 Feb 2018
  12. GeoNue: Le regioni storiche della Sardegna. https://geonue.com/le-regioni-storiche-della-sardegna (2017). Accessed 15 Feb 2018
  13. Gini, C.: Variabilità e mutabilità. Studi economico-giuridici, Facoltà di Giurisprudenza, Università di Cagliari, A, III, parte II (1912)Google Scholar
  14. Iannario, M.: Modelling shelter choices in a class of mixture models for ordinal responses. Stat. Methods Appl. 21(1), 1–22 (2012)CrossRefGoogle Scholar
  15. Iannario, M., Piccolo, D.: A generalized framework for modelling ordinal data. Stat. Methods Appl. 25(2), 163–189 (2016a)CrossRefGoogle Scholar
  16. Iannario, M., Piccolo, D.: A comprehensive framework of regression models for ordinal data. METRON 74(2), 233–252 (2016b)CrossRefGoogle Scholar
  17. Iannario, M., Piccolo, D., Simone, R.: CUB: a class of mixture models for ordinal data. R package version 1.2.0. http://CRAN.R-project.org/package=CUB (2018). Accessed 15 Feb 2018
  18. ISTAT: GeoDemo. http://demo.istat.it/pop2014/index.html (2017). Accessed 15 Feb 2018
  19. Laakso, M., Taagepera, R.: Effective number of parties: a measure with application to West Europe. Comp. Political Stud. 12(1), 3–27 (1989)CrossRefGoogle Scholar
  20. Mahmud, N., Rodriguez, J., Nesbit, J.: A text message-based intervention to bridge the healthcare communication gap in the rural developing world. Technol. Health Care 18(2), 137–144 (2010)Google Scholar
  21. Peterson, L.T., Ford, E.W., Eberhardt, J., Huerta, T.R., Menachemi, M.: Assessing differences between physicians’ realized and anticipated gains from electronic health record adoption. J. Med. Syst. 35(2), 151–161 (2011)CrossRefGoogle Scholar
  22. Piccolo, D.: On the moments of a mixture of uniform and shifted binomial random variables. Quad. Stat. 5, 85–104 (2003)Google Scholar
  23. Tutz, G.: Regression for Categorical Data. Cambridge University Press, Cambridge (2012)Google Scholar
  24. Yin, S., Huang, K., Shieh, J., Liu, Y., Wu, H.: Telehealth services evaluation: a combination of SERVQUAL model and importance–performance analysis. Qual. Quant. 50(2), 751–766 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Political SciencesUniversity of Naples Federico IINaplesItaly
  2. 2.Department of Economics and Management (DISEA) and CRENoSUniversity of SassariSassariItaly

Personalised recommendations