Quality & Quantity

, Volume 51, Issue 1, pp 261–283 | Cite as

Group-mean-centering independent variables in multi-level models is dangerous

  • Jonathan KelleyEmail author
  • M. D. R. Evans
  • Jennifer Lowman
  • Valerie Lykes


Group-mean centering of independent variables in multi-level models is widely practiced and widely recommended. For example, in cross-national studies of educational performance, family background is scored as a deviation from the country mean for student’s family background. We argue that this is usually a serious mis-specification, introducing bias and random measurement error with all their attendant vices. We examine five diverse examples of “real world” analyses using large, high quality datasets on topics of broad interest in the social sciences. In all of them, consistent with much (but not all) of the technical literature, group-mean centering substantially distorts results. Moreover the distortions are large, substantively important differences pointing towards seriously incorrect interpretations of important social processes. We therefore recommend that group-mean centering be abandoned.


Multi-level models Group-mean-centering Bias Random measurement error Variable definition 

Supplementary material

11135_2015_304_MOESM1_ESM.docx (38 kb)
Supplementary material 1 (DOCX 38 kb)


  1. Albright, J.J., and Marinova, D.M.: Estimating multilevel models using SPSS, Stata, SAS, and R. Indiana University, pp. 1–35 (2010)Google Scholar
  2. Bickel, R.: Multilevel Analysis for Applied Research. The Guilford Press, New York (2007)Google Scholar
  3. Blalock, H.M.: Some implications of random measurement error for causal inferences. Am. J. Sociol. 71, 37–47 (1965)CrossRefGoogle Scholar
  4. Blalock, H.M.: The identification problem and theory building: The case of status inconsistency. Am. Soc. Rev. 31(1), 52–61 (1966)CrossRefGoogle Scholar
  5. Blalock, H.M.: Contextual effects models: Theoretical and methodological issues. Annu. Rev Sociol. 10, 353–372 (1984)CrossRefGoogle Scholar
  6. Blau, P.M., Duncan, O.D.: The American occupational structure. Free Press, New York (1967)Google Scholar
  7. Bollen, K.A.: Structural Equations With Latent Variables. Wiley, New York (1989a)CrossRefGoogle Scholar
  8. Bollen, K.A.: The consequences of measurement error. In: Bollen, K.A. (ed.) Structural Equations With Latent Variables, pp. 151–169. Wiley, New York (1989b)Google Scholar
  9. Breznau, N., Lykes, V., Kelley, J., Evans, M.D.R.: A clash of civilizations? Preferences for religious political leaders in 81 nations. J. Sci. Study Relig. 50, 671–691 (2011)CrossRefGoogle Scholar
  10. Chiu, M.M., Chow, B.W.Y.: Classroom discipline across forty-one countries: school, economic, and cultural differences. J. Cross Cult. Psychol. 42, 516–533 (2011)CrossRefGoogle Scholar
  11. Cohen, J., Cohen, P.: Applied multiple regression/correlation analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum, Hillsdale (1983)Google Scholar
  12. Davis, J.A.: The campus as a frog pond: an application of the theory of relative deprivation to career decisions of college men. Am. J. Sociol. 72, 17–31 (1966)CrossRefGoogle Scholar
  13. Diener, E., Tay, L.: The religion paradox: if religion makes people happy, why are so many dropping out? J. Pers. Soc. Psychol. 101, 1278–1290 (2011)CrossRefGoogle Scholar
  14. DiPrete, T.A., Forristal, J.D.: Multilevel models: methods and substance. Annu Rev. Sociol. 20, 331–357 (1994)CrossRefGoogle Scholar
  15. Duncan, O.D.: Methodological issues in the analysis of social mobility. In: Smelser, N.J., Lipset, S.M. (eds.) Social structure and mobility in economic development, pp. 51–97. Aldine, Chicago (1966)Google Scholar
  16. Duncan, O.D., Hodge, R.W.: Education and occupational mobility a regression analysis. Am. J. Sociol. 68, 629–644 (1963)CrossRefGoogle Scholar
  17. Enders, C., Tofighi, D.: Centering predictor variables in cross-sectional multilevel models: a new look at an old issue. Psychol. Methods 12, 121–138 (2007)CrossRefGoogle Scholar
  18. Evans, M.D.R., Kelley, J.: Effect of Family Structure on Life Satisfaction: Australian Evidence. Soc. Indic. Res. 69, 303–353 (2004)CrossRefGoogle Scholar
  19. Evans, M.D.R., Kelley, J., Sikora, J.: Scholarly culture and academic performance in 42 nations. Soc. Forces 92(4), 1573–1605 (2014)CrossRefGoogle Scholar
  20. Evans, M.D.R., Kelley, J., Sikora, J., Treiman, D.J.: Family scholarly culture and educational success: evidence from 27 nations. Res. Soc. Stratif. Mobil. 28, 171–197 (2010)CrossRefGoogle Scholar
  21. Hawkes, R.K.: Some methodological problems in explaining social mobility. Am. Sociol. Rev. 37, 294–300 (1972)CrossRefGoogle Scholar
  22. Hodge, R.W., Kraus, V., et al.: Intergeneration occupational mobility and income. Soc. Sci. Res. 15(4), 297–322 (1986)CrossRefGoogle Scholar
  23. Hofmann, D.A., Griffin, M.A., Gavin, M.B.: The application of hierarchical linear modeling to organizational research. In: Klein, K.J., Kozlowski, S.W.J. (eds.) Multilevel Theory, Research, and Methods in Organizations: Foundations, Extensions, and New Directions, pp. 467–511. Jossey-Bass, San Francisco (2000)Google Scholar
  24. Hox, J.J.: Multilevel Analysis: Techniques and Applications, 2nd edn. Routledge, New York (2010)Google Scholar
  25. Jackson, E.F., Curtis, R.F.: Effects of vertical obility and status inconsistency: A body of negative evidence. Am. Soc. Rev. 37(6), 701–713 (1972)CrossRefGoogle Scholar
  26. Joreskog, K.G.: A general method for analysis of covariance structures. Biometrika 57, 239–252 (1970)CrossRefGoogle Scholar
  27. Kelley, J.: Causal chain models for the socioeconomic career. Am. Sociol. Rev. 38, 481–493 (1973)CrossRefGoogle Scholar
  28. Kelley, J.: Methods and pitfalls in the analysis of social mobility: class of origin, class of destination, and mobility per se. In: Turner, F.C. (ed.) Social Mobility and Political Attitudes: Comparative Perspectives, pp. 233–251. Transaction Publishers, New Brunswick (1992)Google Scholar
  29. Kelley, J., de Graaf, N.D.: National context, parental socialization, and religious belief: results from 15 nations. Am. Sociol. Rev. 62, 639–659 (1997)CrossRefGoogle Scholar
  30. Kelley, S.M.C., Kelley, C.G.E.: Subjective social mobility: Data from 30 Nations. In: Haller, M., Jowell, R., Smith, T. (eds.) Charting the globe: The international social survey programme 1984-2009, chap. 6, pp. 106–124. Routledge, New York (2009)Google Scholar
  31. Kenny, D.A., Kashy, D.A., Bolger, N.: Data analysis in social psychology. In: Gilbert, D.T., Fiske, S.T., Lindzey, G. (eds.) The Handbook of Social Psychology, 4th edn, pp. 233–268. McGraw-Hill Companies, Inc, New York (1998)Google Scholar
  32. Kreft, I.G.G., de Leew, J., Aiken, L.S.: The effect of different forms of centering in hierarchical linear models. Multivar. Behav. Res. 30, 1–21 (1995)CrossRefGoogle Scholar
  33. Kromrey, J.D., Foster-Johnson, L.: Mean centering in moderated multiple regression: much ado about nothing. Educ. Psychol. Measur. 58, 42–67 (1998)CrossRefGoogle Scholar
  34. Krymkowski, D.H.: Measurement in the comparative study of the process of stratification. Soc. Sci. Res. 17, 191–205 (1988)CrossRefGoogle Scholar
  35. Lopez-Turley, R.N.: Is relative deprivation beneficial? The effects of richer and poorer neighbors on children’s outcomes. J. Community Psychol. 30, 671–686 (2002)CrossRefGoogle Scholar
  36. Maas, C., Hox, J.: Sufficient sample sizes for multilevel modeling. Methodology 1(3), 86–92 (2005)CrossRefGoogle Scholar
  37. Marks GN.: Are school-SES effects statistical artefacts? Evidence from longitudinal population data. Oxford Rev. Educ. 41, in press (2015)Google Scholar
  38. Nezlek, J.B.: Multilevel random coefficient analysis of event-and-interval-contingent data in social and personality psychology research. Pers. Soc. Psychol. Bull. 27, 771–785 (2001)CrossRefGoogle Scholar
  39. Nezlek, J.B., Zyzniewski, L.E.: Using hierarchical linear modeling to analyze grouped data. Group Dyn. Theory, Res. Pract. 2(4), 313–320 (1998)CrossRefGoogle Scholar
  40. O’Connor, S., Fischer, R.: Predicting societal corruption across time: values, wealth, or institutions? J. Cross Cult. Psychol. 43, 644–659 (2011)CrossRefGoogle Scholar
  41. Olsen, M.E., Tully, J.C.: Socioeconomic-ethnic status inconsistency and preference for political change. Am. Soc. Rev. 37(5), 560–574 (1972)CrossRefGoogle Scholar
  42. Paccagnella, O.: Centering or not centering in multilevel models? The role of the group mean and the assessment of group effects. Eval. Rev. 30, 66–85 (2006)CrossRefGoogle Scholar
  43. Perna, L.W., Titus, M.A.: The relationship between parental involvement and social capital and college enrollment: an examination of racial/ethnic group differences. J. Higher Educ. 76, 485–518 (2005)CrossRefGoogle Scholar
  44. Preacher, K.: A primer on interaction effects in multiple regression analysis. University of North Carolina, Chapel Hill (2003)Google Scholar
  45. Raudenbush, S.W., Bryk, A.S.: Hierarchical linear models: applications and data analysis methods. Sage Publications, Thousand Oaks (2002)Google Scholar
  46. Roscigno, V.J., Crowley, M.L.: Rurality, institutional disadvantage, and achievement/attainment. Rural Sociol. 66, 268–293 (2001)CrossRefGoogle Scholar
  47. Ross, C.E., Mirowsky, J.: A comparison of life-event-weighting schemes: change, undesirability, and effect-proportional indices. J. Health Soc. Behav. 20, 166–177 (1979)CrossRefGoogle Scholar
  48. Runciman, W.G.: Relative deprivation and social justice. Penguin, Harmondsworth (1966)Google Scholar
  49. Ryabov, I., van Hook, J.: School segregation and academic achievement on Hispanic children. Soc. Sci. Res. 36, 767–788 (2007)CrossRefGoogle Scholar
  50. Sampson, R.J., Raudenbush, S.W.: Seeing disorder: neighborhood stigma and the social construction of “broken windows”. Soc. Psychol. Q. 67, 319–342 (2004)CrossRefGoogle Scholar
  51. Snijders, Tom A.B., Bosker, R.J.: Multilevel analysis, 2nd edn. Sage Publications, Thousand Oaks (2012)Google Scholar
  52. Treiman, D.J.: Status discrepancies and prejudice. Am. J. Soc. 71(6), 651–654 (1966)CrossRefGoogle Scholar
  53. Treiman, D.J., Terrell, K.: Sex and the process of status attainment: a comparison of working women and men. Am. Sociol. Rev. 40, 174–200 (1975)CrossRefGoogle Scholar
  54. Tucker, J.S., Sinclair, R.R., Thomas, J.L.: The multilevel effects of occupational stressors on soldiers’ well-being, organizational attachment, and readiness. J. Occup. Health Psychol. 10, 276–299 (2005)CrossRefGoogle Scholar
  55. Zagorski, K., Kelley, J., Evans, M.D.R.: Economic development and happiness: evidence from 32 nations. Polish Sociol. Rev. 2010, 3–20 (2010)Google Scholar
  56. Zagorski, K., Evans, M.D.R., Kelley, J., Piotrowska, K.: Does national income inequality affect individuals' quality of life in Europe? inequality, happiness, finances, and health. Soc. Indic. Res. 117, 1089–1110 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Jonathan Kelley
    • 1
    Email author
  • M. D. R. Evans
    • 1
  • Jennifer Lowman
    • 1
  • Valerie Lykes
    • 1
  1. 1.University of NevadaRenoUSA

Personalised recommendations