Quality & Quantity

, Volume 48, Issue 5, pp 2739–2755 | Cite as

Inference of the Russian drug community from one of the largest social networks in the Russian Federation

  • L. J. Dijkstra
  • A. V. Yakushev
  • P. A. C. Duijn
  • A. V. Boukhanovsky
  • P. M. A. SlootEmail author


The criminal nature of narcotics complicates the direct assessment of a drug community, while having a good understanding of the type of people drawn or currently using drugs is vital for finding effective intervening strategies. Especially for the Russian Federation this is of immediate concern given the dramatic increase it has seen in drug abuse since the fall of the Soviet Union in the early nineties. Using unique data from the Russian social network ‘LiveJournal’ with over 39 million registered users worldwide, we were able for the first time to identify the on-line drug community by context sensitive text mining of the users’ blogs using a dictionary of known drug-related official and ‘slang’ terminology. By comparing the interests of the users that most actively spread information on narcotics over the network with the interests of the individuals outside the on-line drug community, we found that the ‘average’ drug user in the Russian Federation is generally mostly interested in topics such as Russian rock, non-traditional medicine, UFOs, Buddhism, yoga and the occult. We identify three distinct scale-free sub-networks of users which can be uniquely classified as being either ‘infectious’, ‘susceptible’ or ‘immune’.


Illicit drug use Drug use Social network LiveJournal Power-law  Russian Federation 



The authors thank Dr. Sergey Mityagin from the Saint Petersburg Information and Analytical Center (SPb IAC) for fruitful discussions on the drug addiction profiles in the Russian Federation. In addition, the authors would like to express their gratitude to Prof. Dr. T.K. Dijkstra from the University of Groningen (RUG) and the Free University Amsterdam (VU) for introducing us with false discovery rate control and his useful remarks. This work is supported by the Leading Scientist Program of the Russian Federation, contract 11.G34.31.0019, as well as by the Complexity program of NTU, Singapore. Peter Sloot also acknowledges the support from the FET-Proactive Grant TOPDRIM, Number FP7-ICT-318121.


  1. Agar, M.: Agents in living color: towards emic agent-based models. J. Artif. Soc. Soc. Simul. 8(4). (2005). Accessed 13 May 2013
  2. Agresti, A.: A survey of exact inference for contingency tables. Stat. Sci. 7(1), 131–177 (1992)CrossRefGoogle Scholar
  3. Albert, R., Jeong, H., Barabasi, A.L.: Error and attack tolerance of complex networks. Nature 406, 378–382 (2000)CrossRefGoogle Scholar
  4. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57(1), 289–300 (1995)Google Scholar
  5. Benjamini, Y., Yekutieli, D.: The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29(4), 1165–1188 (2001)CrossRefGoogle Scholar
  6. Bernades, D.F., Latapy, M., Tarissan, F.: Relevance of SIR model for real-world spreading phenomena: experiments on a large-scale p2p system. In: Proceedings of the International Conference on Advances in Social Network Analysis and Mining (ASONAM), Istanbul (2012)Google Scholar
  7. Bollobas, B., Riordan, O.: Robustness and vulnerability of scale-free random graphs. Internet Math. 1(1), 1–35 (2004)CrossRefGoogle Scholar
  8. Cafarella, M., Cutting, D.: Building nutch: open source search. ACM Queue 2(2), 54–61 (2004). doi: 10.1145/988392.988408 CrossRefGoogle Scholar
  9. Clauset, A., Shalizi, C., Newman, M.: Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009). doi: 10.1137/070710111 CrossRefGoogle Scholar
  10. Crucitti, P., Latora, V., Marchiori, M., Rapisarda, A.: Efficiency of scale-free networks: error and attack tolerance. Phys. A Stat. Mech. Appl. 320, 622–642 (2003)CrossRefGoogle Scholar
  11. Daley, D., Kendall, D.: Epidemics and rumours. Nature 204, 1118 (1964). doi: 10.1038/2041118a0 CrossRefGoogle Scholar
  12. Efron, B.: Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing and Prediction. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  13. Everitt, B., Landau, S., Leese, M.: Cluster Analysis. Arnold, London (2001)Google Scholar
  14. Ferri, F., Grifoni, P., Guzzo, T.: New forms of social and professional digital relationships: the case of Facebook. Soc. Netw. Anal. Min. 2(2), 121–137 (2012)CrossRefGoogle Scholar
  15. Fisher, R.: On the interpretation \(\chi ^2\) from contingency tables, and the calculation of \(p\). J. R. Stat. Soc. 85(1), 87–94 (1922)CrossRefGoogle Scholar
  16. Gallos, L.K., Barttfield, P., Havlin, S., Sigman, M., Makse, H.A.: Collective behavior in the spatial spreading of obesity. Sci. Rep. 2(45), 1–9 (2012)Google Scholar
  17. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2009)CrossRefGoogle Scholar
  18. Iribarren, J.B., Moro, E.: Impact of human activity patterns on the dynamics of information diffusion. Phys. Rev. Lett. 103(3), 8–11 (2009)CrossRefGoogle Scholar
  19. Kantardzic, M.: Data Mining: Concepts, Models, Methods, and Algorithms. IEEE Press/Wiley-Interscience, Hoboken (2011)CrossRefGoogle Scholar
  20. Lämmel, R.: Google’s MapReduce programming model—revisted. Sci. Comput. Program. 70, 1–30 (2007)CrossRefGoogle Scholar
  21. Mityagin, S.A.: Modeling the spread of drug-addiction through the population on the basis of complex networks (in Russian—Modelirovanie processov narkotizatsiya nasileniya na osnove kompleksnix cetei). Dissertation, National Research University of Information Technologies, Mechanics and Optics (2012)Google Scholar
  22. Newman, M.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46, 323–351 (2005)CrossRefGoogle Scholar
  23. Ochiai, A.: A zoogeographic studies on the solenoid fishes found in Japan and its neighbouring regions. Bull. Jpn. Soc. Fish Sci. 22, 526–530 (1957)CrossRefGoogle Scholar
  24. Onnela, J., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., Kertész, J., Barabási, A.L.: Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. USA 104(8), 7332–7336 (2007)CrossRefGoogle Scholar
  25. Pinto, C., Mendes Lopez, A., Machado, J.: A review of power laws in real life phenomena. Commun. Nonlinear Sci. Numer. Simul. 17(9), 3558–3578 (2012)CrossRefGoogle Scholar
  26. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)CrossRefGoogle Scholar
  27. Porter, M.F.: Stemming algorithms for various European languages. (2006). Accessed 19 November 2012
  28. Scott, J.: Social network analysis: developments, advances, and prospects. Soc. Netw. Anal. Min. 1(1), 21–26 (2011)CrossRefGoogle Scholar
  29. Sunami, A.N.: Drug-conflict management in the context of information warfare (in Russian—Politika upravleniya narkokonfliktom v kontekste informatsionnoi voiny). Saint Petersburg State University, Saint Petersburg (2007)Google Scholar
  30. Wilson, R.E., Gosling, S.D., Graham, L.T.: A review of Facebook research in the social sciences. Perspect. Psychol. Sci. 7(3), 203–220 (2012)CrossRefGoogle Scholar
  31. White, T.: Hadoop: The Definitive Guide. O’Reilly Media, Yahoo! Press, New York (2009)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • L. J. Dijkstra
    • 1
    • 2
  • A. V. Yakushev
    • 2
  • P. A. C. Duijn
    • 3
  • A. V. Boukhanovsky
    • 2
  • P. M. A. Sloot
    • 1
    • 2
    • 4
    Email author
  1. 1.University of AmsterdamAmsterdamThe Netherlands
  2. 2.National Research University of Information Technologies, Mechanics and Optics (NRU ITMO)Saint PetersburgRussian Federation
  3. 3.Criminal Intelligence AnalysisDutch PoliceThe HagueThe Netherlands
  4. 4.Nanyang Technological UniversitySingaporeSingapore

Personalised recommendations