Quality & Quantity

, Volume 46, Issue 2, pp 559–571 | Cite as

Mulaik on atomism, contraposition and causation

Original Paper

Abstract

Causal inference using statistical models plays a central role in many areas of behavioral science, but the underlying metatheory of causal explanation remains poorly developed. Mulaik’s work on causation offers a useful foray into this topic. Evaluation of two negative arguments applied to a broad range of theories of causation offer overdue critical assessment of this contribution. More broadly, the critical evaluation of Mulaik’s arguments speak to the need for better integration of substantive theories and statistical models in causal research.

Keywords

Causation Causal modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaumont C.: Untitled review. J. Oper. Res. Soc. 34, 654–655 (1983)CrossRefGoogle Scholar
  2. Bollen K.A.: Structural Equation Modeling with Latent Variables. Wiley, New York (1989)Google Scholar
  3. Collins, J., Hall, N., Paul, L.A. (eds): Causation and Counterfactuals. MIT Press, Cambridge (2004)Google Scholar
  4. Cook T.D., Campbell D.T.: Quasi-experimentation: Design and Analysis Issues for Field Settings. Houghton Mifflin, Boston (1979)Google Scholar
  5. Davidson D.: Essays on Actions and Events. Clarendon Press, Oxford (2001)CrossRefGoogle Scholar
  6. Dowe P., Noordhof P.: Cause and Chance: Causation in an Indeterministic World. Routledge, London (2004)Google Scholar
  7. Fuller M.F.: Untitled review. Statistician 33, 317–318 (1984)CrossRefGoogle Scholar
  8. Galavotti M.C., Suppes P., Costantini D.: Stochatic Causality. CSLI Publications, Stanford (2001)Google Scholar
  9. Goldberger A.S.: Wildfire. PsycCRITIQUES 28, 858–859 (1983)CrossRefGoogle Scholar
  10. Holland P.W.: Statistics and causal inference. J Am Stat Assoc 81, 945–960 (1986)CrossRefGoogle Scholar
  11. James L.R., Mulaik S.A., Brett J.M.: Causal analysis: assumptions, models, and data. Sage Publications, Beverly Hills (1982)Google Scholar
  12. Lewis D.: Causation. J. Philos. 70, 556–567 (1973)CrossRefGoogle Scholar
  13. Lewis D.: Causation as influence. In: Collins, J., Hall, N., Paul, L.A. (eds) Causation and Counterfactuals, pp. 75–106. MIT Press, Cambridge (2004)Google Scholar
  14. Mackie J.L.: The Cement of the Universe: A Study of Causation. Clarendon Press, Oxford (1980)Google Scholar
  15. Markus K.A.: Statistical equivalence, semantic equivalence, eliminative induction, and the Raykov–Marcoulides proof of infinite equivalence. Struct. Equ. Model. 9, 503–522 (2002)CrossRefGoogle Scholar
  16. Markus K.A.: Varieties of causal modeling: how optimal research design varies by explanatory strategy. In: Montfort, K., Oud, J., Satorra, A. (eds) Recent Developments on Structural Equation Models: Theory and Applications, pp. 175–196. Kluwer Academic Publishers, Dordrecht (2004)Google Scholar
  17. Markus K.A.: The facts of causation by D.H. Mellor (book review). Struct. Equ. Model. 12, 506–512 (2005)CrossRefGoogle Scholar
  18. Markus K.A.: Hypothesis formulation, model interpretation and model equivalence: implications of a mereological-causal interpretation of structural equation models. Multivar. Behav. Res. 43, 177–209 (2008)CrossRefGoogle Scholar
  19. Markus, K.A.: Structural equations and causal explanations: some challenges for causal SEM. Struct. Equ. Model. (2010a)Google Scholar
  20. Markus, K.A. Linear causal modeling with structural equations (book review). (2010b) (accepted)Google Scholar
  21. Mellor D.H.: The Facts of Causation. Routledge, London (1995)CrossRefGoogle Scholar
  22. Menzies P.: Difference-making in context. In: Collins, J., Hall, N., Paul, L.A. (eds) Causation and Counterfactuals, pp. 139–180. MIT Press, Cambridge (2004)Google Scholar
  23. Mulaik S.A.: Toward a synthesis of deterministic and probabilistic formulations of causal relations by the functional relation concept. Philos. Sci. 53, 313–332 (1986)CrossRefGoogle Scholar
  24. Mulaik S.A.: Toward a conception of causality applicable to experimentation and causal modeling. Child Dev. 58, 18–32 (1987)CrossRefGoogle Scholar
  25. Mulaik S.A.: Objectivity and multivariate statistics. Multivar. Behav. Res. 28, 171–203 (1993)CrossRefGoogle Scholar
  26. Mulaik S.A.: Objectivity in science and structural equation modeling. In: Kaplan, D. (ed.) The Sage Handbook of Quantitative Methodology for the Social Sciences, pp. 425–446. Sage Publications, Thousand Oaks (2004)Google Scholar
  27. Mulaik S.A.: Linear causal modeling with structural equations. CRC Press, Boca Raton (2009)CrossRefGoogle Scholar
  28. Mulaik S.A., James L.R.: Objectivity and reasoning in science and structural equation modeling. In: Hoyle, R.H. (ed.) Structural Equation Modeling: Concepts, Issues and Applications, pp. 118–137. Sage Publications, Thousand Oaks (1995)Google Scholar
  29. Mulaik S.A., Millsap R.E.: Doing the four-step right. Struct. Equ. Model. 7, 36–73 (2000)CrossRefGoogle Scholar
  30. Mulaik S.A., Raju N.S., Harshman R.A.: There is a time and a place for significance testing. In: Harlow, L.L., Mulaik, S.A., Steiger, J.H. (eds) What if there were no significance tests?, pp. 65–115. Erlbaum, Mahwah, NJ (1997)Google Scholar
  31. Pearl J.: Causality: Models, reasoning and inference. 2nd edn. Cambridge University Press, Cambridge (2009)Google Scholar
  32. Pepper S.C.: World Hypotheses: A Study in Evidence. University of California Press, Berkeley (1942)Google Scholar
  33. Psillos S.: Causation and Explanation. McGill-Queen’s University Press, Montreal (2002)Google Scholar
  34. Putnam H.: Mathematics, Matter and Method: Philosophical Papers. Vol. 1, 2nd edn. Cambridge University Press, Cambridge (1979)CrossRefGoogle Scholar
  35. Quine W.V.O.: From a Logical Point of View: Nine Logico-philosophical Essays. 2nd edn. Harvard, Cambridge (1980)Google Scholar
  36. Rubin D.B.: Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol. 66, 688–701 (1974)CrossRefGoogle Scholar
  37. Russell B.: Human Knowledge. Simon and Schuster, New York (1948)Google Scholar
  38. Shadish W.R., Cook T.D., Campbell D.T.: Experimental and Quasi-experimental Designs for Generalized Causal Inference. Houghton Mifflin, Boston (2002)Google Scholar
  39. Simon H.A., Rescher N.: Cause and counterfactual. Philos. Sci. 33, 323–340 (1966)CrossRefGoogle Scholar
  40. Slife B.D., Williams R.M.: Toward a theoretical psychology: Should a subdiscipline be formally recognized?. Am. Psychol. 52, 117–129 (1997)CrossRefGoogle Scholar
  41. Sosa, E., Tooley, M. (eds): Causation, 2nd edn. Oxford University Press, Oxford (1993)Google Scholar
  42. Spirtes P., Glymour C., Scheines R.: Causation, Prediction and Search. 2nd edn. MIT Press, Cambridge (2000)Google Scholar
  43. Suppes P.: A Probabilistic Theory of Causality. North-Holland Publishing, Amsterdam (1970)Google Scholar
  44. Valsiner J.: Dangerous curves in knowledge construction within psychology: fragmentation in methodology. Theory Psychol. 16, 597–612 (2006)CrossRefGoogle Scholar
  45. Wittgenstein L.: Tractatus Logico-philosophicus (Ogden, C.K., trans.). Routledge, London (1922)Google Scholar
  46. Wittgenstein, L.: In: Rees, R., Hargreaves, R. (eds.) Philosophical Remarks, Aue, M.A.E. (trans.). University of Chicago Press, Chicago (1975)Google Scholar
  47. Yanchar S.C., Slife B.D.: Pursuing unity in fragmented psychology: problems and prospects. Rev. Gen. Psychol. 3, 235–255 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Psychology DepartmentJohn Jay College of Criminal JusticeNew YorkUSA

Personalised recommendations