Advertisement

Quality & Quantity

, Volume 45, Issue 6, pp 1331–1348 | Cite as

The framing of risks and the communication of subjective probabilities for victimizations

  • Ivar KrumpalEmail author
  • Heiko RauhutEmail author
  • Dorothea Böhr
  • Elias Naumann
Article

Abstract

What does ‘likely’ mean, when respondents estimate the risk to become a victim of crime? Victimization risks can either be interpreted as gains (“being spared of offences”) or as losses (“becoming a victim of crime”). Because losses are perceived as more severe, respondents will state lower subjective victimization probabilities in the loss-frame, compared to the gain-frame. We demonstrate such a framing-effect with data from an experimental survey. Furthermore, we show that the meaning of vague quantifiers varies with the frequency and the severity of the event. Respondents assign to the same vague quantifiers (e.g. ‘unlikely’) higher likelihoods in terms of percentages for frequent and for less severe events than for infrequent and for severe events. In conclusion, respondents do not use vague quantifiers consistently so that it is problematic to compare subjective risks for different victimizations.

Keywords

Response effects Framing Vague quantifiers Survey methodology Conversational norms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banks S.M., Salovey P., Greener S., Rothman A.J., Moyer A., Beauvais J., Epel E.: The effects of message framing on mammography utilization. Health Psychol. 14, 178–184 (1995)CrossRefGoogle Scholar
  2. Beuer-Krüssel M., Krumpal I.: Der Einfluss von Häufigkeitsformaten auf die Messung von subjektiven Wahrscheinlichkeiten. Methoden, Daten und Analysen: Zeitschrift für empirische Sozialforschung 3, 31–57 (2009)Google Scholar
  3. Bradburn N., Miles C.: Vague quantifiers. Public Opin. Quart. 43, 92–101 (1979)CrossRefGoogle Scholar
  4. Budescu D., Wallsten T.S.: Processing linguistic probabilities: general principles and empirical evidence. In: Busemeyer, J., Medin, D.L., Hastie, R. (eds) Decision Making from a Cognitive Perspective, pp. 275–318. Academic Press, San Diego (1995)Google Scholar
  5. Conrad F.G., Brown N., Cashman E.: Strategies for estimating behavioural frequency in survey interviews. Memory 6, 339–366 (1998)CrossRefGoogle Scholar
  6. Coutts, E.: Context effects in the measurement of subjective probabilities in surveys. Master Thesis, Department of Psychology, University of Konstanz (2002)Google Scholar
  7. Edwards A., Elwyn G., Covey J., Matthews E., Pill R.: Presenting risk information—a review of the effects of “framing” and other manipulations on patient outcomes. J. Health Commun. 6, 61–82 (2001)CrossRefGoogle Scholar
  8. Ghosh A.K., Ghosh K.: Translating evidence-based information into effective risk communication: current challenges and opportunities. J. Lab. Clin. Med. 145, 171–180 (2005). doi: 10.1016/j.lab.2005.02.006 CrossRefGoogle Scholar
  9. Goocher B.E.: Effects of attitude and experience on the selection of frequency adverbs. J. Verbal Learn. Verbal Behav. 4, 193–195 (1965)CrossRefGoogle Scholar
  10. Grice H.P.: Logik und Konversation. In: Meggle, G. (eds) Handlung, Kommunikation, Bedeutung, pp. 243–265. Suhrkamp-Verlag, Frankfurt am Main (1993)Google Scholar
  11. Hakel M.D.: How often is often?. Am. Psychol. 25, 533–534 (1969)Google Scholar
  12. Hammerton M.: How much is a large part?. Appl. Ergonom. 7, 10–12 (1976)CrossRefGoogle Scholar
  13. Hoffrage U., Lindsey S., Hertwig R., Gigerenzer G.: Communicating statistical information. Science 290, 2261–2262 (2000)CrossRefGoogle Scholar
  14. Hörmann H.: The calculating listener, or how many are einige, mehrere und ein paar. In: Bauerle, R., von Schwarze, C., Stechow, A. (eds) Meaning, Use and Interpretation of Language, pp. 221–234. De Gruyter, Berlin (1983)Google Scholar
  15. Jasper J., Goel R., Einarson A., Gallo M., Koren G.: Effects of framing on teratogenic risk perception in pregnant women. Lancet 358, 1237–1238 (2001)CrossRefGoogle Scholar
  16. Kahneman D., Tversky A.: Prospect theory: an analysis of decision under risk. Econometrica 47, 263–291 (1979)CrossRefGoogle Scholar
  17. Karelitz T.M., Budescu D.: You say “probable” and I say “likely”: improving interpersonal communication with verbal probability phrases. J. Exp. Psychol. Appl. 10, 25–41 (2004). doi: 10.1037/1076-898X.10.1.25 CrossRefGoogle Scholar
  18. King G., Murray C.J.L., Salomon J.A., Tandon A.: Enhancing the validity and cross-cultural comparability of measurement in survey research. Am. Polit. Sci. Rev. 98, 191–207 (2004)CrossRefGoogle Scholar
  19. Kreuter F.: Kriminalitätsfurcht: Messung und methodische Probleme. Leske & Budrich, Opladen (2002)Google Scholar
  20. Marteau T.M.: Framing of information: its influence upon decisions of doctors and patients. Br. J. Soc. Psychol. 28, 89–94 (1989)CrossRefGoogle Scholar
  21. McNeil B.J., Pauker S.G., Sox H.C., Tversky A.: On the elucidation of preferences for alternative therapies. New Engl. J. Med. 306, 1259–1262 (1982)CrossRefGoogle Scholar
  22. Menon G., Raghubir P., Schwarz N.: Behavioral frequency judgments: an accessibility-diagnosticity framework. J. Consumer Res. 22, 212–228 (1995)CrossRefGoogle Scholar
  23. Merz J.F., Druzdzel M.J., Mazur D.J.: Verbal expressions of probability in informed consent litigation. Med. Decis. Mak. 11, 273–281 (1991)CrossRefGoogle Scholar
  24. Moxey L.M., Sanford A.J.: Prior expectation and the interpretation of natural language quantifiers. Eur. J. Cogn. Psychol. 5, 73–91 (1993)CrossRefGoogle Scholar
  25. Moxey L.M., Sanford A.J.: Communicating quantities: a review of psycholinguistic evidence of how expressions determine perspective. Appl. Cogn. Psychol. 14, 237–255 (2000)CrossRefGoogle Scholar
  26. Murakami H.: South of the Border, West of the Sun. Vintage, New York (2000)Google Scholar
  27. Nakao M.A., Axelrod S.: Numbers are better than words—verbal specifications of frequency have no place in medicine. Am. J. Med. 74, 1061–1065 (1983)CrossRefGoogle Scholar
  28. Newstead S.E., Coventry K.R.: The role of context and functionality in the interpretation of quantifiers. Eur. J. Cogn. Psychol. 12, 243–259 (2000)CrossRefGoogle Scholar
  29. Pepper S., Prytulak L.S.: Sometimes frequently means seldom: context effects in the interpretation of quantitative expressions. J. Res. Pers. 8, 95–101 (1974)CrossRefGoogle Scholar
  30. Peters E., McCaul K., Stefanek M., Nelson W.: A heuristic approach to understanding cancer risk perception: contributions from judgement and decision-making research. Ann. Behav. Med. 31, 45–52 (2006)CrossRefGoogle Scholar
  31. Reyna V.: The language of possibility and probability: effects of negation on meaning. Mem. Cogn. 9, 642–650 (1981)CrossRefGoogle Scholar
  32. Schaeffer N.C.: Hardly ever or constantly? Group comparisons using vague quantifiers. Public Opin. Quart. 55, 395–423 (1991)CrossRefGoogle Scholar
  33. Schnell R., Kreuter F.: Das DEFECT-Projekt: sampling-errors und nonsampling-errors in komplexen Bevölkerungsstichproben. ZUMA-Nachrichten 47, 89–101 (2000)Google Scholar
  34. Schwarz N., Hippler H.J., Deutsch B., Strack F.: Response categories: effects on behavioural reports and comparative judgments. Public Opin. Quart. 49, 388–395 (1985)CrossRefGoogle Scholar
  35. Schwarz N., Scheuring B.: Judgments of relationship satisfaction: inter- and intraindividual comparison strategies as a function of questionnaire structure. Eur. J. Soc. Psychol. 18, 485–496 (1988)CrossRefGoogle Scholar
  36. Schwarz N., Scheuring B.: Selbstberichtete Verhaltens- und Symptomhäufigkeiten: Was Befragte aus Antwortvorgaben des Fragebogens lernen. Zeitschrift für Klinische Psychologie 22, 197–208 (1992)Google Scholar
  37. Simpson R.H.: The specific meanings of certain terms indicating differing degrees of frequency. Quart. J. Speech 30, 328–330 (1944)CrossRefGoogle Scholar
  38. Sutherland H.J., Lockwood G.A., Trichtler D.L., Sem F., Brooks L., Till J.E.: Communicating probabilistic information to cancer patients—is there “noise” on the line?. Soc. Sci. Med. 32, 725–731 (1991)CrossRefGoogle Scholar
  39. Teigen K.H.: Overestimation of subjective probabilities. Scand. J. Psychol. 15, 56–62 (1974)CrossRefGoogle Scholar
  40. Tversky K.A., Kahneman D.: The framing of decisions and the psychology of choice. Science 211, 453–458 (1981)CrossRefGoogle Scholar
  41. Wänke M.: Conversational norms and the interpretation of vague quantifiers. Appl. Cogn. Psychol. 16, 301–307 (2002). doi: 10.1002/acp.787 CrossRefGoogle Scholar
  42. Wallsten T.S., Budescu D., Zwick R., Kemp S.M.: Preferences and reasons for communicating probabilistic information in numerical or verbal terms. Bull. Psychon. Soc. 31, 135–138 (1993)Google Scholar
  43. Weber E.U., Hilton D.J.: Contextual effects in the interpretation of probability words—perceived base rate and severity of events. J. Exp. Psychol. Hum. Percept. Perform. 16, 781–789 (1990)CrossRefGoogle Scholar
  44. Welkenhuysen M., Evers-Kiebooms G., D’Ydewalle G.: The language of uncertainty in genetic risk communication: framing and verbal versus numerical information. Patient Educ. Couns. 43, 179–187 (2001)CrossRefGoogle Scholar
  45. Windschitl P.D., Wells G.L.: Measuring psychological uncertainty: verbal versus numeric methods. J. Exp. Psychol. Appl. 2, 343–364 (1996)CrossRefGoogle Scholar
  46. Woloshin S., Schwartz L.M., Black W.C., Welch H.G.: Women’s perceptions of breast cancer risk: How you ask matters. Med. Decis. Mak. 19, 221–229 (1999). doi: 10.1177/0272989X9901900301 CrossRefGoogle Scholar
  47. Wright D., Gaskell G., O’Muircheartaigh C.: How much is “Quite a bit”? Mapping between numerical values and vague quantifiers. Appl. Cogn. Psychol. 8, 479–496 (1994)CrossRefGoogle Scholar
  48. Zimmer A.C.: Verbal versus numerical processing of subjective probabilities. In: Scholz, R.W. (eds) Decision Making Under Uncertainty, pp. 159–182. Elsevier, Amsterdam (1983)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of SociologyUniversity of LeipzigLeipzigGermany
  2. 2.Chair of Sociology, in particular of Modeling and Simulation, CLU E6ZurichSwitzerland

Personalised recommendations