Advertisement

Quality and Quantity

, Volume 40, Issue 2, pp 225–244 | Cite as

Taking ‘Don’t Knows’ as Valid Responses: A Multiple Complete Random Imputation of Missing Data

  • Martin Kroh
Article

Abstract

Incomplete data is a common problem of survey research. Recent work on multiple imputation techniques has increased analysts’ awareness of the biasing effects of missing data and has also provided a convenient solution. Imputation methods replace non-response with estimates of the unobserved scores. In many instances, however, non-response to a stimulus does not result from measurement problems that inhibit accurate surveying of empirical reality, but from the inapplicability of the survey question. In such cases, existing imputation techniques replace valid non-response with counterfactual estimates of a situation in which the stimulus is applicable to all respondents. This paper suggests an alternative imputation procedure for incomplete data for which no true score exists: multiple complete random imputation, which overcomes the biasing effects of missing data and allows analysts to model respondents’ valid ‘I don’t know’ answers.

Keywords

incomplete data missing data mixture regression models multiple imputation non-response survey methodology vote choice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, P. D. 2002Missing Data. Sage Series: Quantitative applications in the social sciencesSageThousand OaksGoogle Scholar
  2. Alvarez, R., Franklin, C. 1994Uncertainty and political perceptionsJournal of Politics56671688Google Scholar
  3. Anderweg, R. B., Irwin, G. A. 2002Governance and Politics of the NetherlandsPalgraveNew YorkGoogle Scholar
  4. Anker, H. & Oppenhuis, E. (1997). Dutch Parliamentary Election Study 1994. Ann Arbor: ICPSR (Study Nr. 6740).Google Scholar
  5. Arminger, G.Clogg, C. C.Sobel, M. E. eds. 1995Handbook of Statistical Modeling for the Social and Behavioral SciencesPlenumNew YorkGoogle Scholar
  6. Bartels, L. 1996Uninformed votes: information effects in presidential electionsAmerican Journal of Political Science40194230Google Scholar
  7. Böhning, D.& Seidel, W. (eds.) (2003). Recent developments in mixture models. Computational Statistics & Data Analysis 41 (Special Issue): 349–678.Google Scholar
  8. van der Brug, W., van der Eijk, C. & Franklin, M. (2003). Designs for the empirical analysis of electoral preferences, utilities and choice. Paper prepared for the joint sessions of workshops of the ECPR in Edinburgh, March 2003.Google Scholar
  9. Buuren, S., Oudshoorn, C. G. 2000Multivariate imputation by chained equations: MICE V1.0 User’s ManualTNO Preventie en GezondheidLeidenGoogle Scholar
  10. Eijk, C. 2002Design issues in electoral research: taking care of (core) businessElectoral Studies21189206Google Scholar
  11. Greene, W. 2000Econometric Analysis4Prentice HallLondonGoogle Scholar
  12. Heckman, J. 1979Sample selection bias as a specification errorEconometrica47153161Google Scholar
  13. Honaker, J., Joseph, A., King, G., Scheve, K., Singh, N. 1999Amelia: A Program for Missing DataHarvard UniversityCambridgeGoogle Scholar
  14. King, G., Honacker, J., Joseph, A., Scheve, K. 2001Analyzing incomplete political science data: an alternative algorithm for multiple imputationAmerican Political Science Review954969Google Scholar
  15. Kroh, M. & Eijk, C., van der. (2003). Utilities, Preferences and Choice. Paper presented at the joint sessions of workshops of the ECPR in Edinburgh.Google Scholar
  16. Laird, N. 1978Nonparamteric maximum likelihood estimation of a mixture distributionJournal of the American Statistical Association73805811Google Scholar
  17. Little, R. 1992Regression with missing X’s: a reviewJournal of the American Statistical Association8712271237Google Scholar
  18. Little, R. J., Rubin, D. B. 1987Statistical Analysis with Missing DataJohn WileyNew YorkGoogle Scholar
  19. Raghunathan, T. E., Solenberger, P. & Hoewyk, J., van. (2000). IVEware: Imputation and Variance Estimation Software: Installation Instructions and User Guide. Survey Research Center, Institute of Social Research, University of Michigan.Google Scholar
  20. Rubin, D. B. 1987Multiple Imputation for Nonresponse in SurveysJohn WileyNew YorkGoogle Scholar
  21. Schafer, J. L. 1997Analysis of Incomplete Multivariate DataChapman & HallLondonGoogle Scholar
  22. Tourangeau, R., Rips, L. J., Rasinski, K. 2000The Psychology of Survey ResponseCambridge University PressCambridgeGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  1. 1.German Institute for Economic Research, Socio-Economic Panel Study (SOEP), DIW BerlinGermanyBerlin

Personalised recommendations