# Validity of heavy-traffic steady-state approximations in many-server queues with abandonment

Article

First Online:

Received:

Revised:

- 276 Downloads
- 7 Citations

## Abstract

We consider \(GI/Ph/n+M\) parallel-server systems with a renewal arrival process, a phase-type service time distribution, \(n\) homogenous servers, and an exponential patience time distribution with positive rate. We show that in the Halfin–Whitt regime, the sequence of stationary distributions corresponding to the normalized state processes is tight. As a consequence, we establish an interchange of heavy-traffic and steady-state limits for \(GI/Ph/n+M\) queues.

## Keywords

Diffusion approximations Stationary distribution Geometric Lyapunov function Weak convergence Multi-server queues Customer abandonment Halfin–Whitt regime Phase-type distribution Piecewise OU processes## Mathematics Subject Classification

60K25 93E15 60J70## Notes

### Acknowledgments

JGD is supported in part by NSF Grants CMMI-0727400, CMMI-0825840, CMMI-1030589, and CNS-1248117. ABD is supported in part by NSF Grant CMMI-1252878, and he also gratefully acknowledges the hospitality of the Korteweg-de Vries Institute.

## References

- 1.Bramson, M.: State space collapse with application to heavy traffic limits for multiclass queueing networks. Queueing Syst.
**30**, 89–140 (1998)CrossRefGoogle Scholar - 2.Brown, L., Gans, N., Mandelbaum, A., Sakov, A., Shen, H., Zeltyn, S., Zhao, L.: Statistical analysis of a telephone call center. J. Am. Stat. Assoc.
**100**, 36–50 (2005)CrossRefGoogle Scholar - 3.Budhiraja, A., Ghosh, A.P.: Diffusion approximations for controlled stochastic networks: an asymptotic bound for the value function. Ann. Appl. Probab.
**16**, 1962–2006 (2006)CrossRefGoogle Scholar - 4.Budhiraja, A., Lee, C.: Stationary distribution convergence for generalized Jackson networks in heavy traffic. Math. Oper. Res.
**34**, 45–56 (2009)CrossRefGoogle Scholar - 5.Dai, J.G.: On positive Harris recurrence of multiclass queueing networks: a unified approach via fluid limit models. Ann. Appl. Probab.
**5**, 49–77 (1995)CrossRefGoogle Scholar - 6.Dai, J.G., Meyn, S.P.: Stability and convergence of moments for multiclass queueing networks via fluid limit models. IEEE Trans. Autom. Control
**40**, 1889–1904 (1995)CrossRefGoogle Scholar - 7.Dai, J.G., He, S., Tezcan, T.: Many-server diffusion limits for \({G/Ph/n+GI}\) queues. Ann. Appl. Probab.
**20**, 1854–1890 (2010)CrossRefGoogle Scholar - 8.Dai, J.G., He, S.: Many-server queues with customer abandonment: Numerical analysis of their diffusion models. Stoch. Syst.
**3**, 96–146 (2013)CrossRefGoogle Scholar - 9.Davis, M.H.A.: Piecewise deterministic Markov processes: a general class of non-diffusion stochastic models. J. R. Stat. Soc. B
**46**, 353–388 (1984)Google Scholar - 10.Dieker, A.B., Gao, X.: Positive recurrence of piecewise Ornstein–Uhlenbeck processes and common quadratic Lyapunov functions. Ann. Appl. Probab.
**23**(4), 1291–1720 (2013)CrossRefGoogle Scholar - 11.Gamarnik, D., Zeevi, A.: Validity of heavy traffic steady-state approximation in generalized Jackson networks. Ann. Appl. Probab.
**16**, 56–90 (2006)CrossRefGoogle Scholar - 12.Gamarnik, D., Momčilović, P.: Steady-state analysis of a multi-server queue in the Halfin–Whitt regime. Adv. Appl. Probab.
**40**, 548–577 (2008)CrossRefGoogle Scholar - 13.Gamarnik, D., Stolyar, A.L.: Multiclass multiserver queueing system in the Halfin–Whitt heavy traffic regime: asymptotics of the stationary distribution. Queueing Syst.
**71**, 25–51 (2012)CrossRefGoogle Scholar - 14.Gamarnik, D., Goldberg, D.: Steady-state \({GI/GI/N}\) queue in the Halfin–Whitt regime. Ann. Appl. Probab.
**23**, 2382–2419 (2013)CrossRefGoogle Scholar - 15.Gans, N., Koole, G., Mandelbaum, A.: Telephone call centers: tutorial, review, and research prospects. Manuf. Serv. Oper. Manag.
**5**, 79–141 (2003)Google Scholar - 16.Gurvich, I.: Validity of heavy-traffic steady-state approximations in multiclass queueing networks: the case of queue-ratio disciplines. Math. Oper. Res. (2013). doi: 10.1287/moor.2013.0593
- 17.Halfin, S., Whitt, W.: Heavy-traffic limits for queues with many exponential servers. Oper. Res.
**29**, 567–588 (1981)CrossRefGoogle Scholar - 18.Katsuda, T.: State-space collapse in stationarity and its application to a multiclass single-server queue in heavy traffic. Queueing Syst.
**65**, 237–273 (2010)CrossRefGoogle Scholar - 19.Konstantopoulos, T., Last, G.: On the use of Lyapunov function methods in renewal theory. Stoch. Process. Appl.
**79**, 165–178 (1999)CrossRefGoogle Scholar - 20.Meyn, S.P., Tweedie, R.L.: Stability of Markovian processes III: Foster–Lyapunov criteria for continuous time processes. Adv. Appl. Probab.
**25**, 518–548 (1993)CrossRefGoogle Scholar - 21.Meyn, S.P., Down, D.: Stability of generalized Jackson networks. Ann. Appl. Probab.
**4**, 124–148 (1994)CrossRefGoogle Scholar - 22.Meyn, S., Tweedie, R.L.: Markov Chains and Stochastic Stability, 2nd edn. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
- 23.Puhalskii, A.A., Reiman, M.I.: The multiclass \(GI/PH/N\) queue in the Halfin–Whitt regime. Adv. Appl. Probab.
**32**, 564–595 (2004). Correction: 36, 971 (2004)CrossRefGoogle Scholar - 24.Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, Berlin (1999)CrossRefGoogle Scholar
- 25.Rolski, T., Schmidli, H., Schmidt, V., Teugels, J.: Stochastic Processes for Insurance and Finance. Wiley, Chichester (1999)CrossRefGoogle Scholar
- 26.Tezcan, T.: Optimal control of distributed parallel server systems under the Halfin and Whitt regime. Math. Oper. Res.
**33**, 51–90 (2008)CrossRefGoogle Scholar - 27.Ye, H.-Q., Yao, D.D.: Diffusion limit of a two-class network: stationary distributions and interchange of limits. ACM SIGMETRICS Perform. Eval. Rev.
**38**, 18–20 (2010)CrossRefGoogle Scholar

## Copyright information

© Springer Science+Business Media New York 2014