Queueing Systems

, Volume 74, Issue 2–3, pp 219–234 | Cite as

Passage time from four to two blocks of opinions in the voter model and walks in the quarter plane

  • Irina Kurkova
  • Kilian RaschelEmail author


A random walk in \(\mathbf{Z}_+^2\) spatially homogeneous in the interior, absorbed at the axes, starting from an arbitrary point \((i_0,j_0)\) and with step probabilities drawn on Fig. 1 is considered. The trivariate generating function of probabilities that the random walk hits a given point \((i,j) \in \mathbf{Z}_+^2 \) at a given time \(k\ge 0\) is made explicit. Probabilities of absorption at a given time \(k\) and at a given axis are found, and their precise asymptotic is derived as the time \(k\rightarrow \infty \). The equivalence of two typical ways of conditioning this random walk to never reach the axes is established. The results are also applied to the analysis of the voter model with two candidates and initially, in the population \(\mathbf{Z}\), four connected blocks of same opinions. Then, a citizen changes his mind at a rate proportional to the number of his neighbors that disagree with him. Namely, the passage from four to two blocks of opinions is studied.


Voter model Random walk in the quarter plane Hitting times  Integral representations 

Mathematics Subject Classification

82C22 60G50 60G40 30E20 


  1. 1.
    Aspandiiarov, S., Iasnogorodski, R., Menshikov, M.: Passage-time moments for nonnegative stochastic processes and an application to reflected random walks in a quadrant. Ann. Probab. 24, 932–960 (1996)CrossRefGoogle Scholar
  2. 2.
    Belitsky, V., Ferrari, P., Menshikov, M., Popov, S.: A mixture of the exclusion process and the voter model. Bernoulli 7, 119–144 (2001)CrossRefGoogle Scholar
  3. 3.
    Blanc, J.P.C.: The relaxation time of two queueing systems in series. Commun. Statist. Stoch. Models 1, 1–16 (1985)CrossRefGoogle Scholar
  4. 4.
    Denisov, D., and Wachtel, V.: Random walks in cones. (2011) (in press)Google Scholar
  5. 5.
    Eichelsbacher, P., König, W.: Ordered random walks. Electron. J. Probab. 13, 1307–1336 (2008)CrossRefGoogle Scholar
  6. 6.
    Fayolle, G., Iasnogorodski, R.: Two coupled processors: the reduction to a Riemann–Hilbert problem. Z. Wahrsch. Verw. Gebiete 47, 325–351 (1979)CrossRefGoogle Scholar
  7. 7.
    Fayolle, G., Iasnogorodski, R., Malyshev, V.: Random walks in the quarter-plane. Springer, Berlin (1999)CrossRefGoogle Scholar
  8. 8.
    Fayolle, G., Iasnogorodski, R., and Mitrani, I.: The distribution of sojourn times in a queueing network with overtaking: Reduction to a boundary problem. In: Performance ’83: Proceedings of the 9th International Symposium on Computer Performance Modelling, Measurement and Evaluation, pp. 477–486. North-Holland Publishing Co., Amsterdam (1983)Google Scholar
  9. 9.
    Flajolet, P., Sedgewick, R.: Analytic combinatorics. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  10. 10.
    Kurkova, I., Malyshev, V.: Martin boundary and elliptic curves. Markov Process. Relat. Fields 4, 203–272 (1998)Google Scholar
  11. 11.
    Kurkova, I., Raschel, K.: Random walks in \(\mathbb{Z}_{+}^{2}\) with non-zero drift absorbed at the axes. Bull. Soc. Math. France 139, 341–387 (2011)Google Scholar
  12. 12.
    Liggett, T.: Interacting particle systems. Springer, New York (1985)CrossRefGoogle Scholar
  13. 13.
    Malyshev, V.: An analytical method in the theory of two-dimensional positive random walks. Siberian Math. J. 13, 1314–1329 (1972)Google Scholar
  14. 14.
    MacPhee, I., Menshikov, M., Volkov, S., Wade, A.: Passage-time moments and hybrid zones for the exclusion-voter model. Bernoulli 16, 1312–1342 (2010)CrossRefGoogle Scholar
  15. 15.
    Raschel, K.: Counting walks in a quadrant: a unified approach via boundary value problems. J. Eur. Math. Soc. 14, 749–777 (2012)CrossRefGoogle Scholar
  16. 16.
    Raschel, K.: Green functions for killed random walks in the Weyl chamber of Sp(4). Ann. Inst. H. Poincaré Probab. Stat. 47, 1001–1019 (2011)CrossRefGoogle Scholar
  17. 17.
    Raschel, K.: Paths confined to a quadrant. PhD Thesis of Pierre et Marie Curie University (2010)Google Scholar
  18. 18.
    Sansone, G., Gerretsen, J.: Lectures on the theory of functions of a complex variable II: geometric theory. Wolters-Noordhoff Publishing, Groningen (1969)Google Scholar
  19. 19.
    Szegő, G.: Orthogonal polynomials. American Mathematical Society, Providence (1975)Google Scholar
  20. 20.
    Varopoulos, N.: Potential theory in conical domains. Math. Proc. Cambridge Philos. Soc. 125, 335–384 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Laboratoire de Probabilités et Modèles AléatoiresUniversité Pierre et Marie Curie Paris Cedex 05France
  2. 2.CNRS and Laboratoire de Mathématiques et Physique ThéoriqueUniversité de Tours ToursFrance

Personalised recommendations